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STERA 3D Technical Manual Ver.5.5 is uploaded.
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Ground springs are added.
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“4.6 Mass matrix corresponding to independent degrees of freedom” is added.
STERA 3D Technical Manual Ver.6.0 is uploaded.

Radiation damping for ground springs is added.

External force by Wind is added.

Buckling hysteresis of a brace is added.

Pile foundation is included for ground springs.

Air spring is added for an external spring.

STERA_ 3D Technical Manual Ver.7.0 is uploaded.

For RC column and RC wall, the nonlinear bending springs independent in x and y
directions are introduced.

For Steel beam, the nonlinear shear spring for hysteresis damper is introduced.
Damage indices of members are introduced.

STERA_ 3D Technical Manual Ver.7.1 is uploaded.

The model of the direct input wall is changed to be the lumped mass model.

For external springs, models of the base plate and the pendulum spring are introduced.
STERA_3D Technical Manual Ver.7.2 is uploaded.

For base isolation elements, FPB (Friction Pendulum Bearing) is introduced.
STERA_3D Technical Manual Ver.7.3 is uploaded.

The formula of compression strength of Masonry element is changed.

STERA_3D Technical Manual Ver.7.4 is uploaded.

Viscoelastic damper is added to the passive damper and the shear spring of steel beams.
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1. Basic Condition

1.1 Coordinate

(1) Global Coordinate

The global coordinate is defined as the left-hand coordinate as shown in Figure 1-1-1.
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Figure 1-1-1 Global coordinate
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Figure 1-1-1 Global coordinate
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(2) Local Coordinate

The local coordinate is defined for each element. The displacement freedoms and force freedoms are named
with subscripts indicating the coordinate direction and node name. For example, the local coordinate of a
beam element in Figure 1-2 is defined to have its x-axis in the same direction of the element axis. Also the

displacement and force freedoms of a beam element are expressed as shown in Figure 1-1-2.
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Figure 1-1-2 Local coordinate of a beam element



2. Constitutive Equation of Elements

2.1 Beam

' /' ! nonlinear bending springs

elyA T'yA ¢yA M4 ' M4
H' = ! M A \ A T T T TR X——" M' B
(=17 8 + ¢yB + 1,8 \ - A .5 B y

5 5 0 0

nonlinear shear springs

Figure 2-1-1 Element model for beam

Force-displacement relationship for elastic element
The relationship between the displacement vector and force vector of the elastic element in Figure 2-1-1 is

expressed as follows:

/' 3 [l 0
' 3E] 6E] '
(2 l'y p y MyA
=l ——— — 0 M, (2-1-1)
5'y 6E] ) 3EI ’ N'y
0 0 l_
L EA |

where, E, [ ) A and [' are the modulus of elasticity, the moment of inertia of the cross-sectional area
along y-axis, the cross-sectional area and the length of the element. The rotational displacement vector of

the nonlinear bending springs is,

4 0 M'yA
s o)

where, f 4 and fyB are the flexural stiffness of nonlinear bending springs at both ends of the element.



The force-deformation relationship of shear spring is
0. =ks, or S, = (l/kz ) 0.
From the relationship between shear force and moment,

o, =[y1 i ]{ﬁ}

yB
The end rotational displacement due to shear deformation is obtained as,

1 1
na| [yr]  [yr [yr Co (M ke k| (M,
S AU A IR sl S I Y
kle'z kszl'2

(2-1-3)
where, k_ is the shear stiffness of the nonlinear shear spring. Then, the displacement vector of the beam

element is obtained as the sum of the above three displacement vectors.

HvyA T'yA ¢yA 77yA M'yA
e'yB = T'yB + ¢yB Ty (= [fB ] M'yB (2-1-4)
5. |e, 0 0 N',
where,
i I 1 I 1 T
,t—F -—
S 3EI, kI” 6EI, k1"
[/:]= f, AL (2-1-5)
’ " U3EL K I”
i EA |

[f5] is the flexural stiffness matrix of the beam element. By taking the inverse matrix of [f,], the

constitutive equation of the beam element is obtained as,

M'yA H'yA H'yA
M'yB = [fB ]71 HVyB = [kB] H'yB (2-1-6)
N'x 5',\? 5')(

where, [k,] is the stiffness matrix of the beam element.



Including rigid parts and node movement

Including rigid parts and node movement as shown in Figure 2-1-2, the rotational displacement vector is,

{e'yA} ) {ayA - r} __ oy = 2500, )., +2,1'0,,)

0| |0s-7 I
1 1 11 Het
QyA+;uzA+/1At9yA—;uzB+lBl9yB 7 —; 1+2’A ﬂ“b’ U, o1
= = -1-7
O+ 40,0, sy 4 20, | | = =14 142, || O
/ / [ [ gyB
V/
X
Figure 2-1-2 Including rigid parts and node movement
From node axial displacements, relative axial displacement is,
0", =0,-0, (2-1-8)
Therefore
o' o'
g, [1 o o o] ™ "
|y H' vB 9')/3
0pp=[0 1 0 0f = [, 5 (2-1-9)
5, 00 -1 1| ™ “
5xB §xB
Combining Equations (2-1-7) and (2-1-9),
B 1 1 T uzA uzA
elyA ; - F 1+ ﬂ“A ﬂ’B 0 0 U U_p
Owl_|L L 5 i1 0 ol =[A ]<9y/* (2-1-10)
Sl |1 ' O = "0
’ 0 0 0 0 1 0l ;
5)63 é‘xA 5xA
0 0 0 0 0 1
- N 5xB 5,\3
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Out of plane deformation of beam
If we consider out-of-plane deformation of beam in case of flexible floor, as shown in Figure 2-1-4, the

rotational displacement vector is,

{%} _ {em - r} _ (= 2,00, )~ (u,, +2,0'0.,)

0., l0,-r I
1 1 11 Uy
HzA__,uyA+/’i’Ang+_,uyB+/’i’BezB - 1+/1A /13 u
Oy~ + A0+t + 20, |-~ — A, 144, ||%
I / Il 0,

yB
923
Figure 2-1-3 Beam displacement with rigid connection (X-Y plane)
We can summarize for both ends as
_ ~lu
1 l zA
—F F 1+ )“A ﬂ’B U,
o' 11 9,
M- = A, 144, !
0" A 0,5
a' 1 1 u
'ZA = — == 1+, A v (2-1-12)
9 zB Z l uyB
1 1
xA - — A, 1+ 4, 0.,
[ [ 0
xB 1 zB
5xA
1
- - §xB
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From global node displacement to element node displacement

Transformation from global node displacements to element node displacements is,

uzA
Up U
o u
e=[Tak (2-1-13)
Hy 5 :
5)@4 un
5xB

The component of the transformation matrix, [7},], is discussed in Chapter 4 (Freedom Vector).

From global node displacement to element face displacement

Transformation from the global node displacement to the element face displacement is,

, U U
e,yA U, U,

05t =l A 0T 2 =Tk (2-1-14)
5 : :
ul’l uVl

Transformation matrix for nonlinear spring displacement

The nonlinear spring displacement vector is obtained from the element face displacement as,

¢yA f vA 0 O M' yA

bst=| 0  fi5 O]SM, (2-1-15)
s )L |l
kSZZ' kszl'
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In case of Y-direction beam

Z Z
Y‘% z\EQ‘X
X Y

Local coordinate of Y-beam Global coordinate
Figure 2-1-4 Relation between local coordinate and global coordinate

In case of Y-direction beam, the axial direction of the beam element coincides to the Y-axis in the global

coordinate, transformation of the sign of the vector components of the element coordinate is,

X 0 1 0OflX
y =/-1 0 OKY (2-1-16)
Y—Beam 0 0 1 z Global
Therefore
u 24 - 1 ] u zA u z4
u 2B 1 0 u zB u zB
0 -1 Hx ex
v _ 8 =[s, k- (2-1-17)
eyB -1 HxB HxB
O )y -Beam L L Oy Global Oy Global
Transformation from the global node displacement to the element node displacement is,
u z4
U.p u,
0. u
) o e (2-1-18)
xB .
5_\&4 un
O,p
Transformation from the global node displacement to the element face displacement is,
u, u,
& u u
2 2
9'}73 = [nB ][AB ][SB ][Tin = [TyB . (2' 1-1 9)
5 : :
u n u n
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Constitutive equation

Finally, the constitutive equation of the X-beam is,

B u, U,
SR A T
b, u, u,
For Y-beam,

B u u,
el I =[]
b, u, u,
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2.2 Column

Element model for column is defined as a line element with nonlinear bending springs at both ends and two

nonlinear shear springs in the middle of the element in x and y directions as shown in Figure 2-2-1.

X-Z plane Y-Z plane

Figure 2-2-1 Element model for column

Force-displacement relationship for elastic element
In the same way as the beam element, the relationship between the displacement vector and force vector of

the elastic element is,

A I'
7 3EI,  6EI, |[M'
'yA - h LY 'yA in X-Z plane (2-2-1)
T yp — l_ Z_ M yB
6El, 3EI,
A B '
T’ M'
= 3E];‘ 6€1x “ in Y-Z plane (2-2-2)
T'XB — l— l— M'xB
| 6El,  3EI,
The axial displacement is,
0" = I—N'Z (2-2-3)
EA
The torsion angle by torque force is,
0. =L 1. (2-24)
Gl

where, G and [ are the shear modulus and the pole moment of inertia of the cross-sectional area.
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Force-displacement relationship for nonlinear bending springs

Case 1: In the case that bending springs in x and y directions are independently defined

X-Z plane Y-Z plane

M,
Vo)

B

?

¢y A

A

1
M,

'
M',

Figure 2-2-2 Element model for column

The rotational displacement vector of the nonlinear bending spring is defined independently,

¢yA zfyAMyA, ¢, =f M, atendA (2-2-5)

¢yB :fyBM‘yB, ¢s=f M, atendB (2-2-6)

where, f ., f., f5>and f, are the flexural stiffness of nonlinear bending springs at both ends of

the element.

It can be expressed as

.4 M, S

Do = [pr Mt ':pr] = S atend A (2-2-7)
€ N, L 0

¢yB M 'yB _fyB

b [ = [pr] My, ':fpg] = S atend B (2-2-8)
:p N 'zB N 0
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Case 2: In the case that nonlinear interaction between moment and axial components is considered

Nonlinear interaction M . — M M N_ s considered in the nonlinear bending springs,

'
¢yA M vA N,
&
zB > “zB

Doi [ = [f pA]< M' , + atend A (2-2-9)
€, N'zA \/@\]\4;3 , ¢x3
M')’B ’ ¢yB

Dus M,
Gyt = [pr]< M' ,+ atendB (2-2-10) B
8ZB N 'zB
where, [f,,] and [f,;] are the flexural
stiffness matrices of the nonlinear bending springs.
Therefore, the force-displacement relationship of A
nonlinear bending springs is,

M, P
' yA > YyA
¢yA M yA
¢xA M 'xA M'xA ’ ¢xA
& f 0 N' '
zA — [ PA] 'zA (2_2_11) N s EZA
¢yB O [fPB] M B
P M, Figure 2-2-3 Nonlinear bending springs
ng N'zB

Rearrange the order of the components of the displacement vector and change the node axial displacements

into the relative axial displacement,

é.] [1 0 0 0 0 0] Do P
$s| |00 0 1 00 f“‘ f*/*
$,t=/0 1 0 0 0 0 ¢ZA =[np]<¢ZA (2-2-12)
s [0 0 0 0 1 Off” »
€. 00—1001% &
- h ng ng

The force-displacement relationship is then expressed as,

¢yA M'yA M'yA
¢ B M B M B
bt =, [[fom] [fo ﬂ[”p o (=7, Yo, (213)
¢xB " M'xB M'xB
¢; N'z N'z
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Force-displacement relationship for nonlinear shear springs

Case 1: In the case that shear springs in x and y directions are independently defined

X-Z plane Y-Z plane

MB

A~

B
: 77yB
kvx i
- 1 Qx 2 Sx
i Qy ? Sy
77yA :
A

1

»
yA

M'xA

Figure 2-2-4 Element model for column

The force-deformation relationship of shear spring is
0, 0 k||, s, 0 1k, |0,
From the relationship between shear force and moment,

M

yd
0. 1/ ' 1/ [' 0 0 ||M 1B
{Q'y} B { 0 0 I I } M,
M,
The end rotational displacement due to shear deformation is obtained as,
n.) [y o Yoo 1/ (k)
. (k1)

oo |[s) (Yoo [k, o (o, | YRS
nal 1o yr|ls,[ | o yr| o yk |lo[ | O

n's o o 0

Y(k,) 0 y
Y)Y 0 Arye oy o 0 |m,
RO KT 1
0 1/(ksyl') M.,
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(2-2-15)

(2-2-16)



where

The force-deformation relationship of shear spring is

0,
0, =

Figure 2-2-5 Nonlinear shear springs

=

<

(2-2-17)

(2-2-18)

(2-2-19)



From the relationship between shear force and moment,

MyA M 4
0. l/l' l/l' 0 0 0 MyB MyB
o,t=| 0 0 Yy yr oM, r=[L]iM,, (2-2-20)
N'. 0 0 0 0 1||M, M,
N‘Z NZ
The end rotational displacement due to shear deformation is obtained as,
n. [1 ] 1 ] M, M,
77)/3 1 77y 1 M yB M B
nat=| 1 [mt= 1 AL =[]0, (2221)
UN; 1 & 1 M, M,
&) L 1] i 1] N, N
where

1 fn fe S
1 ho S S foo fo S ||YIY 00000

1 S S Iy [Ls]: S Sfo Su|| O 0 1" 1/I" 0

1 S fa S fo Jo SO0 0 0 1
1] Sy S S
VAR AN e
S/l S/l Sl R/ s
= le/l' f21/1' fzz/l' fzz/l' Jas
S/l Sl /1 full s
WAV SV A Y A Py A

Both cases can be written in

77 yA M

14
. M, (£,] 0

Ut -V 0 e -0 e e2oy
u» M,

eSZ N'Z

The displacement vector of the column element is obtained as the sum of the displacement vectors of

elastic element, nonlinear shear springs and nonlinear bending springs,
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H'yA 4 'yA ¢yA 77yA MyA
Q'yB T 'yB @yB nyB MyB
o . M
'xA _ 'xA + Pra + M4 _ [ fc] xA (2-2-24)
0 xB 4 xB ¢xB an M,vB
5'2 5”2 gz gsz N'z
9'2 9'2 elastic element O bending spring 0 shear spring r 'Z
The flexural matrix [f.] is;
— /! ) 0 _
3EI,  6EI,
A
— 0
3EI,
P
[f.]= 3EI, 611:51x N
3EI.
L
EA
sym o
L GIZ elestic element
_fpll fplZ fp13 fp14 fplS O_
fp22 fp23 fp24 prS O
f p33 f p34 f p35 O +
f paa f p4s 0
f pS55 O
_Sym' O_ bending spring
1] o
7] } (2-2-25)
L 0 shear spring

By taking the inverse matrix of [ f.], the constitutive equation of the column element is obtained as,

M, 0., 0,
M'yB HvyB H‘yB
M, _ [ . ]—1 ', _ [kc] ', (2-2-26)
M, 0' 0'

N', o', o',

r, o', o',
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Including rigid parts and node movement

Change relative axial displacement and torsion displacement into node displacement,

HVyA e'yA
0., 1 0' 0' s
0 1 0 o', o',
o' 1 o' g
xA — xB — [nc] xB (2_2_27)
0"“3 1 §zA é‘zA
5 0 -1 1 S5, S5,
0'. i -1 1}|86, 0,
ezB 023
Including rigid parts and node movement,
uxA
—% % 1+, A, Uss
49'},/1 1 1 9}’*’
0'}’3 B ; ; ZA b+ lB 0 eyB
Z:M zl —% 1+4, A, Mo
u
5= S T o (= A
z4 ; - ; A + A xA
523 1 HxB
02/4 1 52/4
923 O 1 é‘zB
L 1_ ezA
923
(2-2-28)
B uxB
Al
B gyB
N
exB .4 I|I 0 yB
I ! ‘.
‘|| Hva , I.
\ % Z
\ L
H'xA ‘1 Ill
arl “ i O
! —+ V. HxA X
A
/uyA uxA Y

Figure 2-2-6 Including rigid parts and node movement
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From global node displacement to element node displacement

Transformation from global node displacement to element node displacement is;

uxA

uxB
0,
0,

L7 ] “:2 (2-2-29)

D
%

The component of the transformation matrix, [7}.], is discussed in Chapter 4 (Freedom Vector).

From global node displacement to element face displacement

Transformation from the global node displacement to the element face displacement is,

0.,

0' u, u,

9'

H,XA = [nc ][AC ][TzC u;2 = [T c ”:z (2-2-30)
xB : °

5'2 un un

0'.

Constitutive equation

Finally, the constitutive equation of the column is;

B U
ok (2231)
L, u.n

where,

[Ke]=ITc ] Tk I7e ] (2:2-32)
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Transformation matrix for nonlinear spring displacement

The nonlinear spring displacement vector is obtained from

D4 M 'yA MyA MyA
Da M, M'yB MyB
€ | _ [pr] 0 N', _ [pr] 0 [[n ]T 0} M., _ [f ] M,
Oul | 0 [fal[[M] | 0 [r,]E My [ M,
P M', N, N,
&8 N', T, T,
(2-2-33)
and
o M, M,
! " MyB MyB
Uy oh Mo M., M.,
(= [fsz?:l Q'y = [fSp:'[Ls] M'xA = [fsp][LS][[I] 0] Mx = [fsC] Mx
(C,‘Sz Nz MxB N):B NTB
v ] I
(2-2-34)
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2.3 Wall

Element model for wall is defined as a line element with nonlinear bending springs at both ends and three

nonlinear shear springs; one is in the middle of the wall panel and others are in the side columns as shown

in Figure 2-3-1.

Figure 2-3-1 Element model for wall

Force-displacement relationship for elastic element

In the same way as the beam element, the relationship between the displacement vector and force vector of

the elastic element is,

[ A
T B M',.
'«VA‘ = 3E; ¢ 61{5] ¢ ;W‘ in wall panel (2-3-1)
T yBc - - M yBc
| 6EI,  3EI,
A 3 A
T' M’
Al 3E]'1 61?11 Al in side column 1 (2-3-2)
' / [ M'
xB1 — xB1
| 6L, 3El
A B A
T' M’
X2 3E1'2 6%;12 A2 in side column 2 (2-3-3)
7' ! ! M,
6E1, 3EI,
The axial displacement is,
5=t (2:3-4)
EA
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Force-displacement relationship for nonlinear bending springs

Nonlinear interaction M . — M M N_ is considered in the nonlinear bending springs,

zBc » “z

N' & Be
, M'yBc b ¢yBc
M xB1>» ¢xBl ﬂ ﬂ M'xBZ > ¢XBZ

M'xAl > ¢xA1 M'xA2 b ¢XA2
M'yAc b ¢yAc
N 3 Ac

zAc® %z

Figure 2-3-2 Nonlinear bending springs

¢yAc M'yAc
M
P | _ [pr L atend A (2-3-5)
¢xA2 M xA2
ngc N'zAc
¢yBc M'yBc
M'
P | _ [pr S atend B (2-3-6)
¢x32 M xB2
ngc N'ch

where, [f,,] and [f,;] are the flexural stiffness matrices of the nonlinear bending springs. Therefore,

the force-displacement relationship of nonlinear bending springs is,
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¢yAc M'yAc

Do M,
Do M.,
Eoac | _ |:[pr] 0 } N,
b [ L O Ull|M
Do My,
Do M,
€ 28e N' g,

(2-3-7)

Rearrange the order of the components of the displacement vector and change the node axial displacements

into the relative axial displacement,

bon 1 " Doa
b 1 Donr "
¢;1 1 Pt Doso
o 1 b~
b, 1 [ D1
ézc 1 1 D> Do

B “ € €2pe

The force-displacement relationship in Equation (2-3-7) is then expressed as,

¢yAc M'yAc M'yAc
¢yBc M yBe M 'yBc
Do M, M,
¢x31 = [np {[f(})’/‘] [fo ]:|[np ]T M'xBl = [fp]< M'xBl
Doi " M, M,
P s M’ 5, M’ 4,
gZC N'ZC N'ZC

Force-displacement relationship for nonlinear shear springs
The force-deformation relationship of shear spring in the center is

Q'xc = kschc > ch = (l/k.sc ) vac

o.=[yr i ]{ﬁ}

yBc

The end rotational displacement due to shear deformation is obtained as,

27
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77 yAc —
77 yBc

77x/4l _ ksll'2 ksll'2 M
anl - 1 1 M

{mﬂ}_ kol? k,l* {MXAQ}
.52 1 1 M 4,

kszl'z kYZZvZ

where, k

sc

The displacement vector of the column element is obtained as the sum of the displacement vectors of

A T

in side column 1

in side column 2

elastic element, nonlinear shear springs and nonlinear bending springs,

] '

0 yAc Tyt
] '

9 yBe T yBce
] '

0' .4 T an
[ _ |l

0 xBl [ — T xB1
[] 1

0' .1 T2
] '

0' T2
] "

5 zc 5 z¢ J elastic element

The flexural matrix [ f, ] is;

Dac
Dyse
P
¢xB 1
¢xA 2
¢xB 2

&

zc

bending spring

e
1y5c
M
.51
a2

an 2
0

28
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shear spring

MxAc .
in wall panel
M

k, and k_, are the shear stiffness of the nonlinear shear springs.

(2-3-10)

(2-3-11)

(2-3-12)

(2-3-13)



- , ]
3EI.  GEI
z'
3EI,
I I
3EI,  6EI,
l.
[fW ] = ﬁ +
I I
3EI,  6EI,
o
sym. 3L
A
L EAC Jelestic element
/, pll f p17
: +
_fP71 fP77 bending spring
- 1 ]
kI® kI°
1
kI”
1 1
k1? kI
1 (2-3-14)
kI
1 1
k° kI
1
sym. e
L O_ shear spring

By taking the inverse matrix of [ f,, ], the constitutive equation of the column element is obtained as,

29

M'yAc e'yAc e'yAc
M 'yBc o' yBe o' yBc
M, 0' 2
My = [ w ]_1 0 5= [kW]‘ 0' (2-3-15)
M, 01 01
M, 0' 5 0' 5,
N'ZC 5'26‘ 5'26



Including rigid parts and node movement

Change relative axial displacement and torsion displacement into node displacement,

91 _1 T e'yAc H‘yAc
yAc o' o'
91 1 yBce yBc
yBe o' Q'
0' 1 xAl xAl
xA1 9, 9,
xB1 xB1
0 ¢ = 1 o' = [nW]< o'
9' 1 xA2 xA2
xA42 9, 9,
0; 1 xB2 xB2
xB2 5, 5|
5' _ 1 1 zAc zAc
* - B 5'280 5‘236
Including rigid parts and node movement,
1 1
Ou) |1 L5 14y,
9‘ yBc l' l' 1 1
0., 7T 1+4, Ay
Z' B % —% Ay 1+,
xA2 1 l
0' 5 ; —; 1+4, Ay
5'2/46 1 1
o' . ; - ; /IA 1+ ﬂ’B

From global node displacement to element node displacement

Transformation from the center displacements to the node displacements is,

ey ¢ — 4
_— S.—
6, = 2 =0,
J, O 0. W
................ S - 521 + 522
P A— JA— zc 2
w

Figure 2-3-3 Relationship between center and node displacements
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(2-3-16)

yAl
yBl1
H)CA 1
xB1
yA2
yB2
XA2

9\'82

zAc

zBc

(2-3-17)




xAc
XxBc
yAc
yBc
yAl
yB1

xAl

Transformation from the global node displacements to the element node displacements is;

uxAI

§zA 1
5ZA 2

U,p

o

zB1

523 2

U,

U,p

exA 1
exB 1

U,

uyBZ

exA 2
HxB 2

= |-
|-

05 05

2 |-
S

0.5 0.5

xAl
zA1
52/1 2
xBl1
zB1
5213 2
yAl
yB1
xAl
xBl1
yA2
u yB2
xA2

XxB2

[,

xA1

Al

yB1

ng 1
0

xBl1
yA2
U gy
xA2

xB2

(2-3-18)

(2-3-19)

The component of the transformation matrix, [}, ], is discussed in Chapter 4 (Freedom Vector).

From global node displacement to element face displacement

Transformation from the global node displacement to the element face displacement is,
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Q'yAc
9!

yBe ul l/ll
0'xA1

[ uZ ”2
05 = [nW ][AW ][DW ][TixW (= [TxW . (2-3-20)
H'xAZ u' u'
e'xBZ ! !
5'20

In case of Y-direction wall
Z Z
y X
X Y
Local coordinate of Y-wall Global coordinate

Figure 2-3-4 Relation between local coordinate and global coordinate

In case of Y-direction wall, the wall panel direction coincides to the Y-axis in the global coordinate,

transformation of the sign of the vector components of the element coordinate is,

0
=|-1
0

Y-Wall Global

— O O

X
Y (2-3-21)
Z

S O

Therefore
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Uiq
241
0.4
U p1
O
0.
U,q

U p

axA 1
0

u

xB1

yA2

U o

9)&4 2
ng 2

Y-Wall

U,
O
0.1
U,
O
0.

uxAl

U, p

eyAl
0

yB1
Uyo

U,p>
0)//12
o

yB2

Global

U,n

0.4
5zA2
yB1
5281
5.5

U
&
e u

eyAl
0

yB1
Uso

U,ps

0_\)/12
0

VB2 Global

(2-3-22)

Transformation from the global node displacement to the element node displacement is;

Ui

52/1 1
§ZA 2

U p

)

zB1

523 2

uxAl

U p1

0,4
0,
Uysn
Uyps

0

yA2

HyB 2

= [Tin
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Transformation from the global node displacement to the element face displacement is,

0
0" 5.
0')&41
0 (= [”W ][AW ][DW ][‘9W ][TixW (= [TyW . (2-3-24)
02 . .
0' s, ! !

5'

yAc

zc

Constitutive equation

Finally, the constitutive equation of the wall is;

P U,
P u
Jr=lKw kY (23-25)
Pﬂ un
where,
[KxW ] = [TxW ]T [kW ][TxW ] (2-3-26)
For Y-wall,
B U,
1?2 -[x,, u;z (2-3-27)
Pl’l un
where,
L L 9 (2-3-28)

Transformation matrix for nonlinear spring displacement

The nonlinear spring displacement vector is obtained from

34



Duc
Deai
(2
2Ac
D,
2
Pp>

zBc

(oyA c
P
()
Ee
Dye
Drpi
Pp2
Be
xe

1

y2

4]

0

0

[ /1]

MV
MV
Ml

yAc
xA1
xA2

zde
M 'yBc
M
M

xB1

xB2

zBc

(e

= [me]

e
e
M
N'zAc
M

M
M

yAc
xA1

xA2

yBc
xB1
xB2

zBc
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RNVE

e
e

M'yAc
MV
Mv

xA41
xA2
zAc
M '
M '

yBc
xB1

xB2

zBc

0
0 VA
0

' 0

M'yAc
M'
M!

xA1
xA2

z4c
Mv
Mv
Ml

yBc
xB1

xB2

zBc

(2-3-29)
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Furthermore, in the same way as Equation (2-3-8),

M',, M
M'xAl yyAc
Ml M yBc

xA2 M'

' xA1
Ve =[n I {m (2-3-30)
Mv P xB1

yBe M' ,

' xA4
M xB1 M,

' xB2
M xB2 N.
N'ch *

Therefore, the nonlinear spring displacement vector is obtained from the element face displacement as,

Prac

P

(2 M'yAc
Eoue M'yBc
D e M,
Pup1 (= I:pr:|l:np T M’y (2-3-31)
Ppa M,
€. pe M,
My N,
Ma

M2

36



In case of direct input wall

Direct input wall model is defined as a line element with a nonlinear shear spring and a nonlinear bending

spring in the middle of the element as shown in Figure 2-3-1.

Figure 2-3-5 Element model for wall

This model can be used as an alternative model so called the lumped mass model representing the restoring
force characteristics of each layer in the analysis of high-rise building as shown below. The detail of the

model is described in Chapter 7.1

Flexural-shear lumped mass model

PH

RF Flexure

27F Shear

26F

25F

q

24F
Lumped 22F
mass Shear deformation .
model 5H {nonlinear) Hysteresis

4F
3F
oF

1F Flexural deformation
(linear)

Figure 2-3-6 Lumped mass model of high-rise building
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STERA 3D adopts the formulation to have nonlinear shear and bending springs of the element.

Figure 2-3-7 Nonlinear bending and shear springs

Force-displacement relationship

The story drift angle, 6’y , 1s composed of the shear component, 49ys , and the bending component, Qym .

y s ym

1)
0 =—*=60_+60 =—+6 (2-3-32)
h o
where, O_ isthe story driftand O __ is its shear component. In a matrix form
5)68'
S.=[1 h] o (2-3-33)

The nonlinear shear spring is defined as
0. =k, (2-3-34)

The nonlinear bending spring is defined as

My = kbl9ym (2-3-35)
By considering the relationship Q= Ty , the force vector of the element is

QX 1
&)

Therefore, the relationship between the story drift and the shear force is expressed as follows:

o A 2 et

A

0 =kb, k=77 (2-3-37)
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Including node movement
The relationship between the shear spring displacement and nodal displacement is,

From nodal displacement,
5x = uxB - uxA (2_3_38)

In a matrix form

s, =[-1 1]{;’“‘ } = [AL]{Z’”’} (2-3-39)

From global node displacement to element node displacement

Usye _ 1 Uea =[ Dw] Uear (2-3-40)
uch 1 uxBl uXBl

Transformation from the global node displacements to the element node displacements is;

U

u u
{ ’“A‘}:[TM] 2 (2-3-41)

U g :

u

The component of the transformation matrix, [7}, ], is discussed in Chapter 4 (Freedom Vector).

From global node displacement to element face displacement

Transformation from the global node displacement to the spring displacement is,

u, U,
TS |2 [P e S L e 342)
u, u,

Constitutive equation

Finally, the constitutive equation of the lumped mass model is;

B U
1.)2 =[K,] uf (2-3-43)
Pl

where,

(K., ]=[T.] [k][T.] (2-3-44)
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Transformation matrix for nonlinear spring displacement

The nonlinear spring displacement vector is obtained from the element face displacement as,

(H M
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2.4 Brace

Element model for Brace is defined as a truss element with a nonlinear axial spring and pin-supported at

both ends as shown in Figure 2-6-1.

I w | Y

Figure 2-4-1 Element model for brace

Force-displacement relationship

~

/fx451’7x4 fx3’l/7x3
4 3

f'c2 H 17)(

(Brace 1) (Brace 2)

Figure 2-4-2 Local coordinate

The relationship between axial deformation and axial force of the truss element is,

N, =k,0, (2-4-1)
N, =k,0, (2-4-2)
Replacing with the nodal force and displacement in local coordinate along the element,

Nl =" le = f4x > 51 :L74x - L,Tlx (2'4-3)
NZ =T f2x = ~f3x ’ 51 21/73): - L72X (2'4-4)
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In a matrix form,

{51}{—1 0 0 1} i, {—1 0 0 00 01 o} i, i s
- - 2= [n, 4

s/ 1o -1 1 oflg,[ |0 01010 0 0l
1’74)( 173))

1/74)(

7,

fis -1 0
AN
o) L1

Bferfy] o

USRUSNUSNU TN TN SN SN
5 w w ) o —_ =
S = O O O O O

From Figure 2-4-3, the relation between the nodal forces in local coordinate and those of global coordinate
s,
]N‘xl = f,cos0+ f, sind

~ for Brace 1 (2-4-7)
Sy =—fasinb+ [, cosb

and

]N‘xz =—f,cos0+ f ,sinf

~ for Brace 2 (2-4-8)
fy2 = _fx2 Sine—fz2 COSG

Eq. (2-4-8) can be also obtained from the Eq. (2-4-7) by replacing & by (72'—6’) and using the

formulas sin(z — ) = sin 8, cos(z —6) = —cos 6.
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f.sind

(Brace 1)

(Brace 2)

Figure 2-4-3 Coordinate transformation

In a matrix form,

Local

w
020059:7,

c S
-5 cC

—-c S

-5 -c

) h

s:s1n9:7

fa
fa
Jo
I
Ja
L
S
s

Global

Since [Cb ][C b ]T =1, [Ch] is an orthogonal matrix, therefore,

43

Ja
Ja
S
o
Ja
fas
S
Joa

(2-4-9)

(2-4-10)



In a similar manner, from Figure 2-4-4, the relation between the nodal displacements in local coordinate

and those of global coordinate can be obtained as,

u,=u,cosd—u_sin0

for Brace 1

u,=u,sinf+u_,cosl

and

X

u.,=-U_,cosf—u_sinf

for Brace 2

u,=u_,sinf—u_cosf

(2-4-11)

(2-4-12)

Eq. (2-4-12) can be also obtained from the Eq. (2-4-11) by replacing € by (71'—19) and using the
formulas sin(z — ) = sin 8, cos(z — ) = —cos 6.

In a matrix form,

u

x1

u

21
Uy,
U,
ux3
U

ux4

uz4

2 2 h
Vw? +h
I w |
[ |
=u,sinf+u_cosl
~ u,=-u,cosd—u_sinb

Local

u X

Figure 2-4-4 Coordinate transformation

u,=u,cosd—u_,sinf
-s
c
—c -5
s -c
—c -5
s -c
c
s
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Global

= [Cb ]T




The stiffness matrix of brace element is,

{xl}{% :j{i} . {N}:[IF]{5} (2-4-13)

Where
)= [n, it =[n e, T )t =, I, o) (2-4-14)
Fr=le, TV =1e, Y n T Ny (2-4-15)

From global node displacement to element node displacement

Transformation from the global node displacement to the element node displacement is;
u
=T, 1" (2-4-16)

The component of the transformation matrix, [T, ], is discussed in Chapter 4 (Freedom Vector).

From global node displacement to element face displacement

Transformation from the global node displacement to the element face displacement is,

o) =InTc Yoy = [n JO, T B2 = 110§ (2-4-17)

Constitutive equation

Finally, the constitutive equation of the brace is;

P u,
P.2 =[K " (2-4-18)
P, u,

where,

K 5, 1= 1T I s, I7, ] (2-4-19)
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In case of Y-direction brace

X

Local coordinate of Y-wall Global coordinate

Figure 2-7-2 Relation between local coordinate and global coordinate

In case of Y-direction brace, transformation of the sign of the vector components of the element coordinate

is,

X 0 1 X
y =/-1 0 OKY (2-4-20)
Y—Beam 0 0 1 Global
Therefore
uxl 1 u)’l uyl
Z’lzl l Z’lzl le
Z/lxz 1 uyZ uyz
u 1 u u
z2 — z2 — z2 (2_4_2 1 )
U, 1 U, U
Z/tz3 1 qu qu
ux4 1 Z/ly4 uy4
u24 Y—-Brace L 1_ u24 Global u24 Global
Transformation from the global node displacement to the element node displacement is;
u
u
fu}= [T,-ygr ] (2-4-22)
ul’l
Transformation from the global node displacement to the element face displacement is,
u,
u,
{5} = [TyBr : b |_TyBV J = [nb ][Cb ]|.7:yBr J (2-4-23)
u

n
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Constitutive equation

The constitutive equation of the Y-direction brace is;

B u

P-2 = [K yBr ”.2

P, u,
where,

[K VBr ]: [T VBr ]T [k Br ][T VBr ]

47
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In case of K-brace (or Cheveron brace)

3 4 T
h
1 2 —
3 6 6
5
I :—j +h?
1 5 5' 9

For the left half part, as we defined before for the ordinary brace, the stiffness equation of brace element is,

{f }L = [k ]L {” }L [k ]L = [Cb ]T [”b ]T []; JL [”b ][Cb ] (2-4-26)

T
{u}L={uxl U, Us Uys Uz U, Ug uzé}

~1 |k, O -10 0 0001 0
kl, =" , _
HL [0 kzj ] {0 0—101000}
L _
-5 C
—C S
c,]= e c=cost9=M, s=sinf=—
_C S l!
-5 —c
C S
L -5 ]
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For the right half part, in the same way, the stiffness equation of brace element is,

Uy = [t [kl = (6T T el T (2:4-27)

where

{f}R:{fxs fzS fo o fxé fz6 S fz4}T

T
{U}R:{uxs Us U,y U, Uy U Uy uz4}

We can express the nodal displacement vector as,

uxl uxl
uzl uzl
uxl uxz ux2
uzl uzz uzZ
-==1- 1 1 | | ! ]
! ! 1 1
l/lxs __[_1]_:___:____:___:____i___ Mx3 ux3
! ! 1 1
), =Lt R U “al_p, "
uL_ = ___I___I___|___|____:___ — L
L N I LY O L g
1 1 | | i
Us A u.,
uxé uxs urS
uzé qu qu
uxG uxé
u26 uz(;
uxl ux]
uZl uzl
Uys U, U,
les | | | | MZ2 uzz
|-ZF21. . ez
1 1 \ \ 1
2 0 10 o A
1 1 | \
U, 0 U Uz
{“}R == S i ity ik Ertoted s Sl =D,
S N N O S T L £ Uy
! ! 1 [
e A | Uy
Z'{x4 uxS uxS
uz4 qu qu
uX6 ux6
u26 uzf)
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We assume the displacements of intermediate nodes, 5 and 6, are calculated from those of end nodes as

follows,

1
uxS = E(Mxl + ux

ux6 = E(u)d +ux

In a matrix form

)
W)

1
qu = 5(”21 + uzZ )

z = + z4
U 2(”23 ”)

U 1/2 0

U 0 1/2

u | 0 0

u26 Local O O
Therefore,

Uy

U,

Uy Uy

U, U,

Uy Uy

U, _E[_I_]_} U,

Uy [hCh] Uy
M ] Has

U Uy

Uss U-4]) Locar

Uy

U

1/2
0
0
0

= [TCh]<

0
1/2
0
0

x1
z1
uxZ
uzZ
ux3
u23

ux4

uz4

0
0
1/2
0

Local

0

0

0
1/2

0
0
1/2
0
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0

0

0
1/2

x1

z1

Uy
U,
x3
U;
Uy

uz4

Local

= [hCh ]‘

x1
zl
uxZ
uzZ
ux3
Z423
ux4

uz4

Local

(2-4-28)

(2-4-29)



Therefore,

Uy
U,
”xz uxl uxs
U, U, Us
Uy Uy U,

Uy Uy Uys
U, U, U
Uy Uy Uy
Us U] Locar Uzy
Uy
U

Finally the force-displacement relationship of Cheveron brace is,

[k ]L = [Cb ]T [nb ]T l/? JL [”b ][Cb ]

fa
L
Jo
S
S
I
S
Jaa

Local

= (o T (0, T WL D, T )+ [ Y [0 Y ][0 e )

= [DL} i = [DL ][TCh]< 2 , {u}R = Uz = [DR]< Uz
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x1
z
uxZ
z
ux3

uz3

X

uz4

= [DR ][TCh ]< he

z Local

(2-4-30)

(2-4-31)

(2-4-32)



2.5 External Spring

1) Axial spring

523

xB

5, A
5ZA

Figure 2-5-1 Element model for external spring

Force-displacement relationship for the element
The relationship between the displacement vector and force vector of the elastic element in Figure 2-5-1 is

expressed as follows:

W=tk o) i=x .z (2-5-1)

O, =u,—u, (2-5-2)
5'2 = 623 _6214
Therefore
uxA uxA
uxB uxB
=1 100 0 o =fn, " (2-5-3)
uyB uyB
5ZA 5ZA
523 523
uxA uxA
uxB uxB
= 0o =110 o]J”yA = [, B (2-5-4)
uyB uyB
52/1 5ZA
§ZB 5ZB
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Uy Uy
U Uyp
=0 0 0 0 —1 1P =fu, P (2-5-5)
Uy Uy
.4 .
O.5 S5

From global node displacement to element node displacement

uxA
Uyp u,
u, u
Mr=[rh (2-5-6)
Uy :
é‘zA un
523

The component of the transformation matrix, [7} ], is discussed in Chapter 4 (Freedom Vector).

From global node displacement to element face displacement

Transformation from the global node displacement to the element face displacement is,

u, u,
{ ' } = [niE ][]—;E u;z = [TE u:2 , I=X,),2 (2-5-7)
u, u,

Constitutive equation

The constitutive equation of the external spring is;

P u,
1?2 =k, uf (2-5-8)
P u

where,

& =[] [k 7. ] (2-5-9)
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2) Rotational spring

M
(\ 8, Z
ﬁ\ 9, X

¢ e

Figure 2-5-2 Element model for external spring

Force-displacement relationship for the element

The relationship between the displacement vector and force vector of the elastic element in Figure 2-5-2 is

expressed as follows:

(45 e

9, =0, -0,
oo (2-5-11)
¢x = exB - exA
Therefore
0, 9,
-1 1 0, 0,
9, — B _ [ an] B (2-5-12)
¢x _1 1 exA exA
xB ng
From global node displacement to element node displacement
eyA ul
0 u
vB{ _ [TrE] 2 (2-5-13)
0, :
QXB un
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From global node displacement to element face displacement

Transformation from the global node displacement to the element face displacement is,

U U,
s - a-s19
un u}’l

Constitutive equation

The constitutive equation of the external spring is;

P u,

]?2 =k, uf (2-5-15)
P, u

where,

(K ]=[1: ] % I7 ] (2-5-16)
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3) Pendulum element

Figure 2-5-3 Element model for pendulum element

Force-displacement relationship for the element

The relationship between the displacement vector and force vector of the elastic element in Figure 2-5-3 is

expressed as follows:

Q 'x kh 5 'x 5 'x
Q' = k, ' =k, |40, (2-5-17)
N 'Z kV 5 'Z 5 'Z

From node displacements, relative displacements are;

L.
5x_uxB _uxA

O, =u,,—u, (2-5-18)
5'2 = 623 - 6zA
Therefore
uxA uxA
5' _1 uxB uxB
u. u
5, -1 Al [an] » (2-5-19)
S -1 uyB uyB
5ZA 52/1
523 523
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From global node displacement to element node displacement

Transformation from the global node displacement to the element node displacement is,

uxA
uxB Z41
u. u,
=T (2-5-20)
Z/lyB .
é‘zA un
523

The component of the transformation matrix, [7,, ], is discussed in Chapter 4 (Freedom Vector).

From global node displacement to element face displacement

Transformation from the global node displacement to the element face displacement is,

5 U U
8, t=lme [Ty =00 (2-5-21)
o u u

Constitutive equation

The constitutive equation of the Base isolation is;

B

B U
1.)2 =[K,] uf (2-5-22)
Pl

where,

(& 1=[7.] [k.][T:] (2-5-23)
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2.6 Base Isolation

523
B I Z
uxB
uyB
! X
A U.p
Y
uyA
52,4

Figure 2-6-1 Element model for base isolation

Force-displacement relationship for the element

The relationship between the displacement vector and force vector of the element is expressed as follows:

{gj} I ]{jﬁ} (2-6-1)

Including the axial stiffness,

O] T[lk,.] o7 5",
o, = , EA RS, t=lky ko, (2-6-2)
5' l' 5' 5'
From node displacements, relative displacements are;
5')( = Z’l)cli‘ - uxA
O, =u,,—u, (2-6-3)
5'2 = 623 - 6zA
Therefore
uxA uxA
u u
5,x _ 1 1 xB xB
u u,
S, (= 11 M=l b (2-6-4)
S -1 1 Uyp Uyp
’ 5ZA 5ZA
523 523
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From global node displacement to element node displacement

Transformation from the global node displacement to the element node displacement is,

Usa

Uyp U,
u u
u j;l = [Tim ’
0.4 u,
O

(2-6-5)

The component of the transformation matrix, [7,, ], is discussed in Chapter 4 (Freedom Vector).

From global node displacement to element face displacement

Transformation from the global node displacement to the element face displacement is,

U, U,
o',

u u
8, 1= [”31 ][TiBI e [T BI] ;2
5 : :

un un

Constitutive equation

The constitutive equation of the Base isolation is;

P U

]? 2| _ [ K, u,

b, u,
where,

[KBI ] = [TBI ]T [kBI ][TBI]

(2-6-6)

(2-6-7)

(2-6-8)

59



2.7 Masonry Wall

Element model for Masonry wall is defined as a line element with a nonlinear shear spring and a vertical

spring in the middle of the wall panel as shown in Figure 2-6-1.

Figure 2-7-1 Element model for masonry wall

Force-displacement relationship

The relationship between the shear deformation and shear force of the nonlinear shear spring is,
Q'XC = kSX 7/')((’ (2'7'1)

For axial spring,
N'zl = kzg'zl > N'ZZ = kngZZ (2_7_2)

In a matrix form,

Q'XC kSX 0 0 7/'){6 7/'){6
N, t=l0 k 0Re, =k, Le., (2-7-3)
N'z2 0 0 kz 8'22 8'22
Including node movement
The shear angle of the frame with four nodes, A1, A2, B1, B2, is defined as,
00, Ou,
T= + (2-7-4)
ox 0z
where,
852 ~ l 5zA2 — 5zAl + 5282 — 5231 (2-7-5)
ox 2 w w
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auz ~ l uxBl _uxAl + uxB2 _uxA2 (2-7-6)
oz 2 / [

The shear deformation, y'_, is then,

: ! 1
7/ xe = Tl = _(52A2 - é‘zAl + 5282 - é‘zBl )+ _(uxBl - uxAl + uxB2 - uxAZ) (2_7_7)
2w 2
The axial deformation, &', ¢&',, s,
E4=04 =0, €.,=04 —0., (2-7-8)
In a matrix form,
Uin Uip
52/41 é‘zAl
7' -0.5 —0.5i -0.5 O.SL 0.5 —0.5i 0.5 O.SL Uz Ut
- W w w W6, 0.2
g, b= 0 -1 0 0 0 1 0 0 “i=[p, k7
Uyp Uyp
&', 0 0 0 -1 0 0 0 1 :
O.p O.p
uxBZ uxB2
5232 5232
(2-7-9)

From global node displacement to element node displacement

Transformation from the global node displacement to the element node displacement is;

Uy

o

zA1
U o U,

0
242 :[]—;‘xN : (2-7-10)

U,
O u

U,p>

623 2

The component of the transformation matrix, [7} ], is discussed in Chapter 4 (Freedom Vector).

From global node displacement to element face displacement

Transformation from the global node displacement to the element face displacement is,
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;/'xc'
&, b=[Dy I B =, 2-7-11)
8'22

ul’l un

In case of Y-direction wall

Z Z
y ‘% z\EQ‘ X
X Y
Local coordinate of Y-wall Global coordinate

Figure 2-7-2 Relation between local coordinate and global coordinate

In case of Y-direction wall, the wall panel direction coincides to the Y-axis in the global coordinate,

transformation of the sign of the vector components of the element coordinate is,

0 1 0Of|X
={-1 0 0OKY (2-7-12)
Y—Beam 0 O 1 Z Global
Therefore

uxAl u YAl u YAl
é‘zA 1 é‘zAl é‘zAl
Usn Ui U,
5ZA2 — 5ZA2 52,42 (2_7_13)
U, U p U,p
5281 523 1 é‘zB 1
U,ps U p> U, p>
5232 y-wall L 1 . 5282 Global 5232 Global

Transformation from the global node displacement to the element node displacement is;
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uyAl

o

Al
U, U,
0.4 _ [
uy, N
0. u

U g

523 2

Transformation from the global node displacement to the element face displacement is,

' u, u,
}/ xXc u u
' _ 2| _ 2
Ear= [D N ][Tin (T [T YN
, :
& z2
u u

n n

Constitutive equation

Finally, the constitutive equation of the wall is;

P U
P u
'2 - [K xN -2
P}‘l u n
where,
[szv ] = [TxN ]T [kN ][TxN ]
For Y-wall,
P U
P u
:2 _ [ KyN :2
P}‘l u n
where,

[ = [0 T ey I
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(2-7-15)

(2-7-16)

(2-7-17)

(2-7-18)

(2-7-19)



2.8 Passive Damper

Element model for passive damper with a shear spring is defined as a line element with a nonlinear shear

spring as shown in Figure 2-8-1.

v, |

Q'XC s 7’)60
/;/

Al A2 [ o |

A

| w
I

Figure 2-8-1 Element model for passive damper

Force-displacement relationship

The relationship between the shear deformation and shear force of the nonlinear shear spring is,

0. .=k, (2-8-1)

Including node movement

The shear angle of the frame with four nodes, A1, A2, B1, B2, is defined as,

00, Ou,
rT=—=+4 (2-8-2)
ox Oz
where,
99, ~ l 8.0 =0 + 0.5 —0.p1 (2-8-3)
ox 2 w w
u, ~ 1 Uy —uy, Mmoo (2-8-4)
oz 2 / /
The shear deformation, y'_, is then,
, ! 1
7/ xc = Tl = E(é‘zAZ - é‘zAl + 5282 - é‘zBl )+ E(MXBI - uxAl + uxB2 - uxA2 ) (2_8_5)
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The axial deformation, &', ¢&',, s,
E'4=04 =0, €.,=0.4 0. (2-8-6)
In a matrix form,
Uy Uy
52/1] é‘zAl
! ! ! L \|u 42 Uyo
v -05 -05— -05 05— 05 -05— 05 05— x
. w w w w 52/‘12 52/12
b=l 0 -1 0 0 0 1 0 0 =[D, }
u u
&', 0 0 0 -1 0 0 0 1 . -
5281 5281
uxBZ uxB2
5232 5232
(2-8-7)
From global node displacement to element node displacement
Transformation from the global node displacement to the element node displacement is;
uxAl
52141
Uppr u,
é‘z uZ
=T,k (2-8-8)
Uyp
5231 un
Uypr
5232

The component of the transformation matrix, [7} ], is discussed in Chapter 4 (Freedom Vector).

From global node displacement to element face displacement

Transformation from the global node displacement to the element face displacement is,

] ul ul
yXC
u u
e t=[D Tk 2t =To k] (2-8-9)
8'22 .
url u}’l

65



In case of Y-direction damper

Z Z
y ‘% z\EQ‘ X
X Y
Local coordinate of Y-wall Global coordinate

Figure 2-8-2 Relation between local coordinate and global coordinate

In case of Y-direction damper, the damper direction coincides to the Y-axis in the global coordinate,

transformation of the sign of the vector components of the element coordinate is,

0 1 0Of|X
={-1 0 0OKY (2-8-10)
Y—Beam 0 O 1 Z Global
Therefore

uxAl u YAl u YAl
é‘zA 1 é‘zAl é‘zAl
Usn Ui U,
1) o 0.

zA2 — zA2 A2 (2-8-11)
U, U p U,p
5281 523 1 é‘zB 1
U,ps U p> U g
5232 y-wall L 1 . 5282 Global 5232 Global

Transformation from the global node displacement to the element node displacement is;

u yAl
é‘zAl
U U
1) u

“2to[r ) (2-8-12)
Uyp
O.p1 u
Uypy
5232
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Transformation from the global node displacement to the element face displacement is,

' U U
Ve u u
vl 2| 2
0= [DD ][Tin (= [TyD
' :
& z2
un un

Constitutive equation

Finally, the constitutive equation of the damper is;

A U
P u
'2 = [K xD ] :2
Pil u’l
where,
[K xD ] = [I;D ]T [kD ][TxD ]
For Y-damper,
A U
P u
.2 _ [ KyD .2
Pl’l un
where,

[, 1= [0} ko 1.0
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Appendix : Calculation of shear component

For “Masonry Wall” and “Passive Damper”, the shear deformation is defined as follows:

1) Shear deformation in one direction

¥ ¥
& &
Ml
#
&
—

L

Shear strainisT=Al/1 =0

2) Shear deformation in two directions

¥
&

Ay
2 _I_ y:x

Shear strain is T=0;+0,=Al/ 1y+A1y /1y

ou, ou y
+—— > Eq.(2-7-4) and Eq. (2-8-2)

y  Ox

If we discuss small element 7 =
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This definition is necessary to remove rotational component. To explain this, suppose there is only

rotational (or bending) deformation,

v

v

W

From the above definition, shear angle will be

= 0+(-0)=0

For example, in the upper story of the building under horizontal deformation, the bending
component is dominant and the shear component is small. Therefore, the brace damper

doesn’t work in the upper story.

AN
[~




3) In case of damper element

We define the shear angle in one direction as follows:

01

We adopt the average angle,

6=

1/2 (61 +62)

v

In the same way, the shear angle in another direction is

01

0=

12 (01 +6%)

v
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2.9 Floor Element

In the default setting, STERA 3D adopts “rigid floor”. However, elastic deformation of a floor diaphragm
in-plane can be considered by the option menu selecting “flexible floor”. The stiffness matrix of the floor

element is constructed using a two dimensional isoparametric element.

5
] MNode 1

o

Node 4

!
1
1
Xy
Figure 2-9-1 4-nodes isoparametric element

The stiffness matrix with 4-nodes isoparametric is expressed as,

A U,
o, Y
P, U,
0, [ V)
= KF]<
P Uy
0, V3
P, U,
0, V4
F =K u (2-9-1)

The coordinate transfer function {x, y} is expressed using the interpolation functions as follows:

x(r,s) = 24: h.(r,s)x, = %(1 +r)1+s)x, + i(l -r)(1+s)x, + %(1 -r)(1-s5)x, + %(1 +7r)(1-9)x,

§7) = Y 5), = (4 P+ + (=) 4 (= =)y, + 1+ =5,

i=1

(2-9-2)
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The deformation function {u, v} is also expressed using the same interpolation functions.
4 1 1 1 1

u(r,s)= Zhi (r,8)u,; :Z(l +r)(1+s)u, + Z(l - +s)u, + Z(l -1 -su, + Z(l +r)(1-s)u,
i=1

v(r,s)= ihi (r,s)v, = i(l +r)(+s)v, + i(l -1 +s)yv, + i(l -rl-s)yv, + %(l +r)(1-s)v,

i=1
(2-9-3)
Stiffness matrix can be obtained from the “Principle of Virtual Work Method,” which is expressed in the

following form:

jéTa dv=u"F (2-9-4)
4

where, £ is a virtual strain vector, o is a stress vector, u is a virtual displacement vector and F is a

load vector, respectively.

In case of the plane problem, the strain & vector is defined as,

ou
€. o
e, |= % (29-5)
Vs ou oOv
o

Substituting equation (2-9-3) into equation (2-9-5), the strain vector is calculated from the nodal

displacement vector as,

ou O,
&g, ox e
ov 2, Oh,
‘c"v = ~ = - Vi
’ oy o oy
Vo) |ou ov 4, Oh, 4\ Oh,
—+ Z—u[ + ) —v
oy Ox = Oy = Ox

U,
oh oh oh oh "
e 0o -2 0 -3 0 4 0 u

Ox ox ox ox 2

= 0 % 0 % 0 % 0 % V2
oy oy oy oy | u,

% % oh, ©h, ©h, Oh, Oh, Oh, v,

oy oOx oy Ox oy Ox Oy Ox u,

Va4

™
Il

™

<

(2-9-6)
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In the plane stress problem, the stress-strain relationship is expressed as,

o, I v 0 £,
E
o,|=—|v 1 0 g, (2-9-7)
l-v l1-v
T, 0 0 — e
o= (& g

Substituting equation (2-9-6) into equation (2-9-7),
o=CBu (2-9-8)
From the Principle of Virtual Work Method,

[ (Bit) (CBu)dv = ET[ | BTCdedy]u =u'F (2-9-9)

v V(x,y)

Therefore, the stiffness equation is obtained as,

F=Ku, K-= jBTCde (2-9-10)
v
If we assume the constant thickness of the plate (= t), using the relation dv = tdxdy ,
K=t jBTCdedy (2-9-11)
V(x,y)

Since this integration is defined in x-y coordinate, we must transfer the coordinate into r-s coordinate to use

the numerical integration method. Introducing the Jacobian matrix,

& o
_|or or|. : : o.
J= o oy Jacobian Matrix (2-9-12)

0s Os

the above integration is expressed in r-s coordinate as,

11

K= II J.B(x(r,s), y(r,s)) CB(x(r,s),y(r,s))M drds (2-9-13)
i a(r,s)
where
ox Oy
o(x,y) o or
— 22> =detJ = 2-9-14
o) Tl o e
Os Os
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Evaluation of Jacobian Matrix

ax

_| or
kS

Os

¥

or | _

Y
Os

4 oh, 4
25 &

4 on,

= gxi Z_yi

Evaluation of the matrix B

oh,

B=| 0

0y

The derivatives —, -

o

5 oy
o

0
oh,

oh,

an,
Ox
0

0
on,

o
0
oh, 0Oh, Oh,

oy
oy
oh,

o gy Ox 0Oy

o o, oh,
o’ Tox oy

o _oh o oh 35

ox  Or Ox

Os Ox~

o _oh or o &5

Oy

In a matrix form,

oh
Oox

oh,  oh, Oh,

oy

Evaluation of partial derivatives of the interpolation functions

or 8y 0s oy’

oh, ©oh, Oh,

ox Ox Ox

oh, |~

o oy oy

I il

oh, 1

ar at
oh 1
a0
Oh 1 ’
gl
oh, 1
ERrA

Oox

oh,

---,— are calculated as,

oy

or

Ox
or

oy

oh,

_oh,or ohos

" Ox
Oh,

 or ox

_ohor ohy s

b 6y

a5
Ox
as
oy

oh,

oh,

_ar@/

oh, o,

or Or
Oh, Oh,

Os Os

oh, o,

oh, Oh,

=—(1+7r)

=—(1-r)

=——(1-r)

on, 1
os 4
oh, 1
o5 4
oh, 1
o 4
oh, 1
s
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= —Z(l +S)

(2-9-15)

(2-9-16)

(2-9-17)
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The 3 points Gauss Integration Formula is defined as:

j F()dt =0.5556 £(~0.7746)+0.8889 (0)+0.5556 £(0.7746)

=a,f(t)+a,f(t,)+a,f(t;)

where, a, =0.5556, a, =0.8889, a, =0.5556
t, =—-0.7746, 1, =0, 1, =0.7746

£(0.7746)

f(t)

£(-0.7746)

-1-0.7746 0 +0.7746 +1

The stiffness matrix is then calculated numerically as follows:

—1-1 >

= tj‘ j‘F(r, s)drds

—1-1

where

o(x,y)

F(r,s) = B(x(r,s), y(r,s)) CB(x(r,s), y(r,s)) o(r,s)

o, =0.5556, «, =0.8889, a, =0.5556
rn=s5 =-0.7746, r,=5,=0, r,=5,=0.7746
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From global node displacement to element node displacement

Transformation from global node displacements to element node displacements is,

(2-9-21)

The component of the transformation matrix, [7}, ], is discussed in Chapter 4 (Freedom Vector).
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2.10 Connection Panel

1) General case
In the default setting, STERA3D assumes the rigid connection zone between column and beam. You can
consider shear deformation of the connection area (we call “connection panel”) by the “Connection

member” menu.

v
N

Figure 2-10-1 Connection area

Shear deformation of the connection panel, v, is defined as shown in Figure 2-10-2.

l€&<—{ uc= —O.SYAh
«—-

0.5ya \
[ "B/T

A | ’ B Op= 0-5"{A

h
w w
|

Figure 2-10-2 Definition of shear deformation

Differences of displacement at node B and C are;

Auy 0 Au,. - 0.5y ,h
Node B: Av, ¢ =<—=0.57 ,wr, NodeC: {Av. = 0 (2-10-1)
A, 0.5y, AG,. -0.5y,

7



First we consider nodal movement without shear deformation of the connection panel. As shown in Figure

2-10-3, the displacement at node B and node C will be;

Uy u, Ue u,—0,h
NodeB: (v, r=qv, +6,w;, Node C: <V, ¢ & v, (2-10-2)
03 eA ec 9/1

Then, we consider shear deformation of the connection as shown in Figure 2-10-4. By adding Equation

(2-10-1) to (2-10-2), the displacement at node B and node C will be;

Figure 2-10-2 Nodal movement without shear deformation of the panel

Figure 2-10-4 Nodal movement with shear deformation of the panel
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u
u, u, 0 u, 1 00 0 4

y
Ve RV, +O,wr+3-05y we=<v, +0,w-05y,w;=/0 1 w —0.5w QA
0, 0, 0.57, 0,+0.5y, 00 1 05 4

Va

(2-10-3)
Node C:

u
ue| (u,—6,h (-05y,h) (u,-6,h—-05y,k] [1 0 h —05K] *

\%
Ver®e v, (+1 0 = v, =01009A
0, 0, ~0.5y, 0,-05y, 001 —05]|"“

V4

(2-10-4)

2) Beam element

In case of rigid connection, as described in Equation (2-1-7), the nodal displacement is expressed as,

{a'yA} ) {ayA - r} _ oy = 2500, )., +2,1'0,,)

0| |0s-7 I
1 1 11 He
O, +-u, +1,0,——u,+2,0, — —— 1+4, A ||y
- ll 11 = ll 11 923 (2-10-5)
HyB +—'MZA +2‘A0yA__,uzB +/1b"9yB - T /IA 1+AB 4
! ! Il 0.,
Z

Figure 2-10-5 Beam displacement with rigid connection

79



If we consider shear deformation of connection panel, from Figure 2-10-6,

05| 105+05y,-7] I
1 1
0, +;u2A +4,0,, —;uzB + 430, +0.5y,,—054,7,,—0.54,7 4

1 1
HyB +7uzA +AA¢9yA —7u23 +239y3 +0-57y3 —O.S/IA}/yA —0.5/13}/y3

uzA
1 1 Z'tzB
5oy A A 055054, 054 |lg
Ll a4 —0s4,  05-054,||%
T

}/yA

J/yB

U, u, +A,00,,-05y,,)

>

Q

&
o

{e'yA} _ {eyA +0.57,, - r} (1. = 2,06, = 0.5y, )~ (., + 2,1'(6,,-057,,))

(2-10-6)

Figure 2-10-6 Beam displacement with shear deformation of connection panel
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The transformation matrices for beam element are;

Including connection panel and node movement

o, ll_ll 144, 24, 05-051, —054,
?B =% _% A, 144, -05i, 05-054,
xA
xB

From global node displacement to element node displacement

uzA

u zB

9}, y u,

0
. = []—;xB
}/ yA
7/ yB un
5xA

5){3

From global node displacement to element face displacement

Transformation from the global node displacement to the element face displacement is,

. U U
e,yA U, U,
0 vB [~ [nB ][AB ][TixB (T [T B1 -
o', ’

u” un

81

U,
2B
A
VB
V4
VB

5xB

:[AB]<

(2-10-

(2-10-

(2-10-

Uy
2B
A
VB
V4
VB
.4
.5

10)

11)

12)




In case of Y-direction beam

0

y =[-1
0

o o -
- o o
N ~ X

Y—-Beam

u_, 1
U 1
0,
0,5
V4
Yy
O
0.

Y—-Beam L

Transformation from the global node displacement to the element node displacement is,

U,
Up
0. U,
0.5
Vx4
Y xB u,
0,4
o

yB

I

ivB

Transformation from the global node displacement to the element face displacement is,

' ul
0., )
0' B[~ [nB ][AB ][S B ][Tin ’
o',

u

Global

82

u zA

uzB

0){/4
HxB
7/ xA

}/XB
0,
0.5

Global

:[SB]<

u zA

uzB

exA
exB
7 xA

yxB
o

yA

0.5

Global

(2-10-13)

(2-10-14)

(2-10-15)

(2-10-16)



3) Column element

In case of rigid connection, as described in Equation (2-2-16), the nodal displacement in X-Z plane is

expressed as,

{evﬂ } i {eyA - r} e =406, + 44016,)

0‘y3 GyB -7 /'
1 1 11 Hoca
O, ——uy,+4,0,+—u,+1,0, —— = 1+4, A ||y
— I I - ” (2-10-17)
1 1 11 0
OyB ——u, +/1A0yA +—U +/130y3 -— - Ay 1+, (A
! ! I 0,

Al

Figure 2-9-7 Column displacement with rigid connection (X-Z plane)
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If we consider shear deformation of connection panel, from Figure 2-10-8,

{%} i {eyA ~0.57,, - r} (=210, 1057, )~y + 2,00, +057,,)
0, 0,5—0.5y, 7| A

1 1
0,4 _FuxA +4,0,, +f”x3 + 50,5 = 0.5y, +0.54,7,, +0.54,7

1 1
0,5 —;um +4,0,, +FuxB +A5360,,—0.5y,, +0.54,7,,+0.54,7 4

uxA
1 1 uxB
—o o A A4 S05+054, 054, |lg)
= 0 ) (2-10-18)
—— = A, 144, 051,  —05+052,||%"
ll ll
yyA
j/yB
Al
ll
Al

Figure 2-9-8 Column displacement with shear deformation of connection panel (X-Z plane)
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In the same manner, assuming rigid connection, the nodal displacement of column in Y-Z plane is

expressed as,

{H'M} _ {em - r} _ = 2,00, )~u,, +2,1'6.,)

0' ., 0,1 A
1 1 1 1 Uyy
exA +;uyA +1A9xA —;uyB +/1ng3 ; —; 1+/1A AB uyB
_ 1 1 = ; (2-10-19)
QxB +;1/lyA +ZAHxA _;uyB +ﬂ’BexB ; —F ﬂA 1+ﬁ’B 0"‘4
xB
B
Al
HxB
/'
Z
4 X
A0

Figure 2-9-9 Column displacement with rigid connection (Y-Z plane)
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If we consider shear deformation of connection panel, from Figure 2-10-10,

0| _[0,-057, -7 My = 25105 +0.57,5) =, + A,1'(0,, +0.57.,)
0., lo,-05y,-[ I

0. +%uyA +2,0,, _%”yB + 30,5 —0.57,, +0.54,7,, +0.54,7 4

1 1
0, +fu“”' +1,0, _fuyB + 250 5, =05y , +0.54,7 ,+054,7

u,
1o “ye
5omw LHA 4, 054054, 054, ||g,
o , (2-10-20)
S A, 144, 051,  —05+054, ||0s
[ /'
j/xA
]/xB
B _
A0
S,
l‘
A0
N L

Figure 2-9-10 Column displacement with shear deformation of connection panel (Y-Z plane)
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The transformation matrices for column element are;

Including connection panel and node movement

Uy
Uwp
- - eyA
Ul LA A 0,
o r ’ 2 2 2 y
v 1 1 A, 1 A 4
H'yE —; F A,A ]+ﬂ,8 7 _E+7 Vs
z“ 11 —% 144, —%#%A 4 o
'8 _ Uyp
5zA - % _% A‘A 1+/13 % _%"'% ng
Op 1 O,
0., 1 Vxa
0., 1 VB
i 1] 0.4
S.p
0.,
0
Uy
Uwp
0)&4
0.
V14
7B
U,
u
—IA VB
(Ack 0
O
Vxa
VB
.
S.p
0, (2-10-21)
0
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From global node displacement to element node displacement

uxA

uxB

0

yA
0,5
j/yA
}/yB
vA ul
Uyp [T u,
9 iC .
x4
0, u
7/xA
7);3

& &
N

B

>

A

N

(2-10-22)

e
%

From global node displacement to element face displacement

Transformation from the global node displacement to the element face displacement is,

HV
\l
0 VB u, U,

'
9 xA4

yA

=[nJac]m k7 =Tk (2-10-23)
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4) Force-displacement relationship for the connection

Figure 2-9-11 Shear deformation of connection area
The relationship between the displacement vector and force vector of the element is expressed as follows:

M k 0
{ Px} — |: Px i|{7/x} (2_10_24)
M, 0 k|7,

where, initial stiffness of connection area is,
kp, =kp, =GV (2-10-25)

where, G is the shear modulus and V is the volume of the connection.

From global node displacement to element node displacement

Transformation from the global node displacement to the element node displacement is,

{; } =7, uf (2-10-26)

The component of the transformation matrix, [7, ], is discussed in Chapter 4 (Freedom Vector).

Constitutive equation

The constitutive equation of the external spring is;

A U
1?2 =k, uf (2-10-27)
P, M.n

where,

(&, 1=[1,] [k, 17 ] (2-10-28)
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2.11 Ground Spring

Foundation
K, M .. 0

yG° ¥ yG

H
%% V) o
) T A
Cs, Ky C,
K / Foundation
Hy /
CSy
MxG’ exG\(\
/ N

P_..,u

v6o Uye CRr
KRx

Figure 2-11-1 Element model for ground spring

Force-displacement relationship for the element
The relationship between the displacement vector and force vector of the ground springs attached at the
center of gravity of the foundation in Figure 2-11-1 is expressed as follows:
Sway and rocking in X-direction

P K, 0 ||u, C, 0 ||u,

S | 0 (2-11-1)
M 0 K HyG 0 ¢C Ry ﬁyG

Sway and rocking in Y-direction
T R I W T (2-11-2)
M xG O K Rx HxG O CRx exG
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Therefore

Pg Ky, 0 ||ug Cra 0 ||y
Be | _ Ky Uya | Cry L"'yG
M »G K Ry eyG CRy eyG
M xG 0 KRx exG 0 CRx xG (2 113
uxG L‘le
u u
=[k¢] eyG +[c6] e.yG
G yG
exG exG
From global node displacement to element node displacement
U U
u u
=T, )8 (2-11-4)
HyG :
HxG un

The component of the transformation matrix, [7}], is discussed in Chapter 4 (Freedom Vector).

Constitutive equation

The constitutive equation of the ground spring is;

A U, i

1-)2 =[Ks] B +[Cs] u2 (2-11-5)
N T

where,

[Ko]=[Te] [ke)Te). [Col=[Te] [eo][Te] (2-11-6)
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3. Nonlinear Element Models

Notation
a, Area of rebar in the tension side of the section
S Total area of rebar in the section
o, : Strength of rebar
Op : Compression strength of concrete
o, : Strength of shear reinforcement
D Depth of the section
d : Effective depth of the section.
b Width of the beam
J Distance between the centers of stress in the section (= (7 / 8)d ).
Z, Section modulus including the slab effect.
E, Young’s modulus of steel
E. Young’s modulus of concrete
The Young's modulus of concrete E_ (MPa) is calculated from the value of concrete
strength o, (MPa) by the following formula:
E, =3.35x10*x(p/24)" x(0,/60)"
where p is the unit volume weight of concrete = 23 (kN/m?)
n : Ratio of Young’s modulus (=E_ / E )
b, : Tensile reinforcement ratio
D : Shear reinforcement ratio
1, : Moment of inertia of section considering the slab effect
M, : Crack moment
M y : Yield moment
M/(QD) Shear span-to-depth ratio
0. : Crack rotation of the beam end
6’y : Yield rotation of the beam end
9. : Crack rotation of the nonlinear bending spring
¢y : Yield rotation of the nonlinear bending spring
k, : Initial stiffness
ky Tangential stiffness at the yield point
k 2 Stiffness after the yield point in the nonlinear bending spring

92



=

K
<

[SIISIS

=

Stiffness after the ultimate point in the nonlinear shear spring
Stiffness degradation factor at the yield point

Crack shear force

Yield shear force

Ultimate shear force

Distance between the corner springs in the Multi-spring model
Crack shear deformation

Yield shear deformation

Ultimate shear deformation
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3.1.1 Beam
3.1.1 RC Beam

a) Section properties

S
. . as
t ' al
i e e e o ldl oo olrFwem i 0 O]
— o
al [ 17777777C
D
e e
T o o — =22 |
B |
B : Width of beam,
D : Height of beam,
S : Effective width of slab,
t : Thickness of slab
dl1 : Distance to the center of top main rebars,
d2 : Distance to the center of bottom main rebars,
al : Area of top main rebars,
a2 : Area of bottom main rebars
as : Area of rebars in slab
Figure 3-1-1 RC Beam Section
Area of section to calculate axial deformation
Ay =BD+(S—B)t +(n; —1)a, +a, +ay) (3-1-1)
where,
ny,=E /E, : Ratio of Young’s modulus between steel (£y) and concrete (E¢)
Area of section to calculate shear deformation
A, =BD (3-1-2)
Moment of inertia around the center of the section
BD*> (S-B)f DY t Y
I,= LEZBE g-—=| +(S-BY{D-=-g| +
12 12 2 2
p 2
2 2
(n,~1)a, (D—d, — g}’ +(n, ~1)a, (g —d, )’ +(n, ~1)a (D—E—gj (13
where, g is the center of beam section calculated by
BD*/2+(S=B)t(D—1/2)+(n, —1){a,d, +a,(D—d,)+as(D—1/2)} (1)

Ay
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b) Nonlinear bending spring

G gde

nonlinear shear springs

Figure 3-1-2 Element model for beam

Hysteresis model of a nonlinear bending spring is defined as the moment-rotation relationship under the
anti-symmetry loading in Figure 3-1-3. The initial stiffness of the nonlinear spring is supposed to be infinite,

however, in numerical calculation, a large enough value is used for the stiffness.

y %&V;M ™~

Moment distribution

M , M M
M ¥ y M,
6GEI  _
M, |7 k= T T om
’A“ ko N R
0. 0, 0 r & 4, ¢
Elastic element Nonlinear bending spring

Figure 3-1-3 Moment — rotation relationship at bending spring
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Crack moment force

For reinforced concrete elements, the crack moment, M, is calculated as,

M. =056\c,2,, Z,=1,/¢g when tension in top main rebars (3-1-5)

M., =056 0,2, Z,=1, /(D - g) when tension in bottom main rebars  (3-1-6)

where,

O, : Compression strength of concrete (N/mm?)

Z,,Z, : Section modulus

Yield moment force

The yield moment, M , is calculated as,

M, =090, (D —-d, )+ 0.9a,0, (D —t/ 2) when tension in top main rebars
M, =09a,0, (D —-d, ) when tension in bottom main rebars
where,

o, : Strength of rebar (N/mm?)

Yield rotation

The tangential stiffness at the yield point, ky , is obtained from the following equation,:
_6F I,
[

k=ak

y yos

k, (3-1-9)

where,

(3-1-7)

(3-1-8)

@, is the stiffness degradation factor at the yield point, which is obtained from the following

empirical formulas:

a, =(0.043+1.63np, +0.043a/ D)d /D), (a/D<2) (3-1-10)
a, =(-0.0836+0.159a/D)d /D), (a/D>2) (3-1-11)
where,
D, : Tensile reinforcement ratio
p, = (a1 +a, )/ (BD) (when tension in top main rebars)
p, = (as )/ (BD) (when tension in bottom main rebars)
a/D : = Shear span-to-depth ratio (=//(2D) )
d : Effective depth
d=D-d, (when tension in top main rebars)
d=D-d, (when tension in bottom main rebars)
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@, 1s modified in case of tension in top main rebars as

' IeO
a,’=a (3-1-12)
y y ]
BD’ —_— N
where [, = 12 the moment of inertia of square section without slab

The yield rotation of the nonlinear bending beam, ¢y , 1s then obtained from,

1 M
#=| 1>

a, k,

(3-1-13)

In general, the relation between the rotation of bending spring and that of nonlinear bending spring is
M
p=0——2= (3-1-14)
ky

Crack rotation

From Figure 3-1-2, the crack rotation of the nonlinear bending beam, ¢,, is supposed to be zero value,

however, in STERA 3D program, it is assumed as,

¢.=0.001¢, (3-1-15)
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Effective width of slab

Figure 3-1-4 Effective slab area for flexural capacity of beam

In general, effective width of slab for the flexural behavior of a beam is assumed as,

S, =0.1L, =D (3-1-16)
where, L, : Length of beam
D : Height of beam

However, recent studies suggest the contribution of full length of slab to the flexural capacity, M y»ofa

beam. Therefore, STERA3D adopts two types of effective widths:

1) For calculating section are and moment of inertia

S,=0.1L,~D

2) For calculating the yield moment, M o in Equation (3-1-8),
S, =n,L, (3-1-17)

where, L : Length of span
n, : Effective slab ratio (0.1 ~ 0.5), the default value is 0.1.
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Hysteresis model

To consider the difference of the flexural capacity between positive and negative side of the beam, a
degrading tri-linear slip model is developed based on the Takeda Model for the hysteresis model of the
bending springs of the beam.

B

2
B

9,

(3-1-18)
¢lﬂ

b oon| M o[ M k[M—J
! P, 9, B =P,

Figure 3-1-5 Degrading Tri-linear Slip Model
(a=0.5, p=0.0 and n=0.001 as default values)

The strength degradation under cyclic loading is considered by elongating the target displacement, ¢, , to

be @', asshown in the following Figure:

(3-1-19)

Figure 3-1-6 Introducing strength degradation (y=0.0 as default value)
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Relationship between curvature and rotation

M
Figure 3-1-7 Rotation angle and curvature at beam ends
Let’s think about the relationship between curvature and rotation at the end of a beam.
In the above loading condition, the relationship between moment and rotation is
6El
M = T 0 (3-1-20)
On the other hand, the relationship between moment and curvature is
M
¢=— (3-1-21)
EI
Therefore,
6
= 7 0 (3-1-22)

Assuming the neutral axis is in the middle of the section, the relationship between curvature and

compression strain at the section end is

o= i (3-1-23)
D/2
Therefore, the relationship between rotation and compressive strain is
/ /
O=—¢p=—=¢, (3-1-24)
6 3D
, /
Assuming D = 5 , then
0=3¢, (3-1-25)

If &, reaches 0.003, € isaround 0.01 (=1/100).

It corresponds to the yielding rotation of a beam.
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¢) Nonlinear shear spring

Hysteresis model of nonlinear shear spring is defined as the shear force — shear rotation relationship using

an origin-oriented poly-linear model.

Uy N
M, +M
MA Q ;MB Q:%

nonlinear shear springs

ky3 =0.001%,
Qy ky3
0, — s
O k :GA/I
S, s, S, S

Figure 3-1-8 Force—deformation relationship of shear spring

Yield shear force

The yield shear force, O, is calculated as,

0.053p,"% (o, +18)
= ! +0.85 o +b-j 3-1-26
0, { M /(OD)+0.12 VP Ty (07) (3-1-26)

where,
D, : Tensile reinforcement ratio
Op : Compression strength of concrete
)28 : Shear reinforcement ratio
o, Strength of shear reinforcement

J : Distance between the centers of stress in the section (= (7 / 8)d ).

Crack shear force

The crack shear force is, (., is assumed as,

0.= % (3-1-27)
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Ultimate shear force

The ultimate shear force is, @, , is assumed as,
0,=0, +k, (S,, —Sy) (3-1-28)

NOTE)
In STERA 3D, the stiffness after yielding is temporary assumed to be positive to avoid instability in

numerical analysis.

0
0, k. =0.001k,

y3

k, =GA/l

c y u

Figure 3-1-9 Stiffness after yielding

Crack shear deformation

The crack shear deformation is obtained as,

0
.=V, V. ==5 (3-1-29)
e 7 GA
Yield shear displacement

The yield shear deformation is assumed as,

1
Sy :}/yl, }/y :E (3-1-30)

Ultimate shear displacement

The ultimate shear deformation is assumed as,

s =yl _ L (3-1-31)
u ;/u’ ]/u 100
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d) Modification of initial stiffness of nonlinear springs

In numerical calculation, a large dummy value is used for the initial stiffness of the nonlinear spring to
represent rigid condition. This large stiffness may cause an error for estimating the force from the
displacement. One possible way to solve the problem is to reduce the initial stiffness of the nonlinear spring
to be a certain value reasonable for calculation, and on the other hand, increase the stiffness of the elastic
element so that the total initial stiffness of the beam element does not change from the original one. This

idea is proposed by K-N Li (2004) for MS model.

-

o)

Elastic element Nonlinear bending spring

Increase Reduce
stiffness i

stiffness

S
[
=
Il
|
=
=
_|_
K;%\*
[
7~ N\
|~
!
=
|

Figure 3-1-10 Modification of moment — rotation relationship

103



The idea is realized using flexibility reduction factors, 7, (< 1), Vs (< 1), in the relationship between the

displacement vector and force vector of the elastic element in Equation (2-1-1) as,

I !
"3Er TeEr. C
r'yA p y l'y M'yA
! = — 0 RM' 3-1-32
T 6El. 2 3EI v ( )
5, , v
0 L
L EA |
/' /' /' /'
Itmustbe y, ——> or 7,>0.5 and. y,——> or 7, >0.5.
3EI, 6EI, 3EI, 6FI,

Also the initial flexibility matrix of the nonlinear spring can be expressed as follows, introducing the

parameters, p,, p, to increase the initial flexibility.

bu) [p/EL 0 M,
ot R ol 139

When p, =0, p, >0, it represents the infinite stiffness for rigid condition. Accordingly, the crack and

yield rotation will be modified as,

. M . 1 M,
=D, =|—=y |— (3-1-34)
9. =p £l ¢y [ay e 1} k,
In general, the relation between the rotation of bending spring and that of nonlinear bending spring is
M}’
p=0-y—= (3-1-35)
ky
Making the modified flexibility matrix to be identical to the original one,
I I | I I I |
3EI, 6E1, EI 3EI, 6L,
oy - Py, Iy (3-1-36)
3EI, EI 3EI,
sym o sym o
L EA Joriginal L EA -mod ified

This gives the flexivility reduction factors as:

3 3
n=l=2pn ra=l=5p (3-1-37)
From the conditions y, >0.5 and y, >0.5,
< z <£ (3-1-38)
pl 6 s p2 6
lV
K-N Li (2004) calls these parameters, p;, p,, as “plastic zones” and recommends to be p, = p, = E

Them the reduction factors will be y, =y, = 0.7.
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e) Modification of stiffness degradation factor at the yield point
(The following modification of the stiffness degradation factor, ¢, is suggested by Prof. Okano at Chiba
University.)

From Equations (3-1-32) and (3-1-34), the yield rotation of the member t9y under anti-symmetric loading

condition, M, =M, =M ,» is calculated as,

2y -1)M M M
gy=w+(i_7]_y:(i+7/_q_y (3-1-39)
k, a k,

y

where y, =y, =7.

The yield rotation Hy in Equation (3-1-39) is different from the formula in Figure 3-1-10 since the factor

¥ is multiplied to only diagonal elements of flexural matrix in Equation (3-1-32).

The stiffness degradation factor is then obtained as,

1 [ l ]
—=|—tr-l (3-1-40)
a a

y

To realize the designated value of stiffness degradation factor, o ) should be modified as,

a, :/[051'+1_7/J (3-1-41)
y

For example, to realize the stiffness degradation factor «' = 0.4, assuming y = 0.7, the modified « is

a =1/[ L +1-07]=0357
: 0.4

This modification is done automatically in STERA 3D.
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f) Modification of considering rigid zone ratio
A beam-column connection can be idealized as a rigid zone. In case of a beam element, the default length
of the rigid zone is set to be a half of the column width, and the nonlinear bending spring of the beam

element is arranged at the position of the column face.

On the other hand, if elastic deformation of the connection is considered by reducing the length of rigid
zone, the position of the nonlinear bending spring will be inside the connection area. In this case, when the
nonlinear bending spring is yielding, the moment value at the position of the column face is smaller than

the yield moment.

Column Column

SEE L v e = et e e et Ll

<

Figure 3-1-11 Reduction of rigid zone and modification of yield moment

To make the moment at the column face to be the same as yield moment, the yield moment of the nonlinear
bending spring is increased as,
I [/2+(1-n)d,
! [/2

M, =M,

. (3-1-42)
£=1+20-m) %
For example, when [ =540cm, d, =30cm, 1n=0.75,
E=1+2x%(0.25)%x30/540=1.027 (3-1-43)
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3.1.2 Steel Beam

a) Section properties

z
——— A I
tr
H >y
—e
L B )|
T A

B : Width, H: Height, ty,tr: Thickness

Figure 3-1-12 Steel Beam Section

Area of section to calculate axial deformation

A, =2Bt,+(H -2, ), (3-1-44)
Area of section to calculate shear deformation ( )
Ag=(H-21,), (3-1-45)

Moment of inertia around the center of the section
BH® —(B—1t,)(H-2t,)
1 y = T : along strong axis (3-1-46)
3 3
J - 2th +(H - 2tf )t,
: 12

Moment of inertia for torsion

: along weak axis (3-1-47)

I=1+1, (3-1-48)
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b) Nonlinear bending spring

0,
HB =3Tp (Tt ¢B
o 1) 0

\ nonlinear bending springs

Figure 3-1-13 Element model for beam

Hysteresis model of a nonlinear bending spring is defined as the moment-rotation relationship under the
anti-symmetry loading as shown in Figure 3-1-14. The initial stiffness of the nonlinear spring is supposed

to be infinite, however, in numerical calculation, a large enough value is used for the stiffness.

y %&V;M ™~

Moment distribution

M M M
My My /O
k, = @
k / ..\ kn ~ 00 E
0, 0 4, y
Elastic element Nonlinear bending spring

Figure 3-1-14 Moment — rotation relationship at bending spring
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Yield moment force

The yield moment, M , Is calculated as,

1
My :|:Btf(H_tf)+th(H_Zt_f)2i|6y (3-1-49)
where,
o, : Strength of steel (N/mm?)
o,
............................... M

Figure 3-1-15

Yield rotation
From Figure 3-1-14, the yield rotation of the nonlinear bending beam, ¢y , 1s supposed to be zero value,
however, in STERA 3D program, it is assumed as,
¢y= 0.001 Hy (3-1-50)
where

6ET
6’y=My/k0, ko:T

Hysteresis model

A bi-linear model is assumed for the hysteresis model.

Figure 3-1-16 Hysteresis of steel
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¢) Modification of initial stiffness of nonlinear springs

In numerical calculation, a large dummy value is used for the initial stiffness of the nonlinear spring to
represent rigid condition. This large stiffness may cause an error for estimating the force from the
displacement. One possible way to solve the problem is to reduce the initial stiffness of the nonlinear spring
to be a certain value reasonable for calculation, and on the other hand, increase the stiffness of the elastic
element so that the total initial stiffness of the beam element does not change from the original one. This

idea is proposed by K-N Li (2004) for MS model, and can be used for nonlinear spring model also.

)

Elastic element Nonlinear bending spring

M M M

| M M |
0, =— = r=—2 + ~0 !
: g k() kO ¢J’ :
L e e e e e e e e e e e e e e e e e e e o o o = = ——— o —————————————— 1
Increase Reduce
stiffness stiffness
M M

)
Il
z
Il
|

~
_I_
\;S~
Il
—_
|
X
~
<

Figure 3-1-17 Modification of moment — rotation relationship
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The idea is realized using flexibility reduction factors, 7, (< 1), Vs (< 1), in the relationship between the

displacement vector and force vector of the elastic element in Equation (2-1-1) as,

I !
"3Er TeEr. C
r'yA p y l'y M'yA
! = — 0 RM' 3-1-51
T 6El. 2 3EI v ( )
5, , v
0 L
L EA |
/' /' /' /'
Itmustbe y, ——> or 7,>0.5 and. y,——> or 7, >0.5.
3EI, 6EI, 3EI, 6FI,

Also the initial flexibility matrix of the nonlinear spring can be expressed as follows, introducing the

parameters, p,, p, to increase the initial flexibility.

bu) [p/EL 0 M,
ot R ol 152

When p, -0, p, >0, it represents the infinite stiffness for rigid condition. Accordingly, the yield

rotation will be modified as,

¢ M, (3-1-53)
"R -
In general, the relation between the rotation of bending spring and that of nonlinear bending spring is
M
p=0—y — (3-1-54)
ky
Making the modified flexibility matrix to be identical to the original one,
' ' 7] B /' & 7]
3EI, 6El, EI 3EI, 6E1,
oy - P, L (3-1-55)
3EI, EI 3EI,
L EA Joriginal L E4 - mod ified

This gives the flexivility reduction factors as:

7/121_%171, 7221_%1’2 (3-1-56)
From the conditions y, >0.5 and y, >0.5,
A A
)2 <g, ) <g (3-1-57)
K-N Li (2004) calls these parameters, p;, p,, as “plastic zones” and recommends to be p, = p, = ll_(;

Then, the reduction factors will be y, =y, = 0.7.
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d) Shear spring for damper using low yield strength steel

nonlinear shear springs

M, +M Ky
Qz%, Na=My =7

Nonlinear relationship between shear force (0 and deformation s is defined.
e) Shear spring for damper using viscoelastic material

When velocity-dependent restoring forces are included, the constitutive equation of the member in

incremental form based on the balance of forces is obtained as follows.

nonlinear shear spring (viscoelastic)

Figure 3-1-18 Element model for beam
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The relationship between the displacement vector and force vector of the elastic element is expressed as

follows:
L
M M
Ty _ 3EI 6E] 4 :[Fe] 4 (3-1-58)
W7\ [l T
6EI 3EI
or
4B 281
M _
ek =[RS L (3-1-59)
w, T, 281 4l
/ /

where, £, I, A and [ are the modulus of elasticity, the moment of inertia of the cross-sectional area,

the cross-sectional area and the length of the element.
The relationship between the displacement vector and force vector of the nonlinear bending springs is,

{ZHZEZ;} (3-1-60)

where, m ((0) is the nonlinear hysteresis model of the bending spring.

M = m((p)
AM
kp
4
Agp

Figure 2 Nonlinear hysteresis for bending springs

In incremental form, the relationship can be linearized as

k 0
IvARKITN MR e
AM 0 k,|lAp, Ao,

or

Ap, | _ Joa O |[AM, _ AM ,
PN AR e

where, k A = 1/ f A and k B = l/ f pp are the stiffness of nonlinear bending springs in incremental range

at both ends of the element.
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From the relationship between shear force and moment,

B

0=[11 1/1]{ZA} (3-1-63)

The end rotational displacement due to shear deformation is obtained as,

n, 1 1/1 5)
= = S, n=— 3-1-64
te=bpr=liel =5 —

where, O is the shear deformation of the damper.

For the viscoelastic damper, the shear force is defined as
Q=cd+k05 (3-1-65)

where, ¢, isthe damping coefficient and k, is the stiffness of the damper.

The displacement vector of the beam element is obtained as the sum of the above three displacement

vectors.
0 1/1
0, T, 0y 1/1
In incremental form
AO A A 1/1
A — 7’-A + ¢A + / A5 (3 -1 -67)
AG, Az, Ao, 1/ /
From the above equations,

{XZ}:[KJ{Z:}:[KP]{?Z:} (3-1-68)

MIEEARE I NREA e 3-1:69
R i R PO o 18 | R A PR TE

{22} - ([1] + [FPJ[Ke])il [{ig:}‘ {zj} ACS} (3-1-71)
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The equation of viscoelastic damper at time ¢ is

0, =c,0,+k3,
Substitute the following equations,

0,=0.,+A0
5 =80

At
0,=0,,+Ad
Then

AQ=Csi—f+ks(5t—1 +A5)-0,,

On the other hand,

AQ =[1/1 1/1]{$A}:[1/1 l/l][Ke]{ArA}

B ATB

=yt vk J([11+[F, ] [Ke])i1 ({iz;f } B %M)

S0 S R S GRS

Since the two equations are equal,

20=c, 524k (6., +40)-0, = [R]{iZZ}_[R]{mM

(Zst +k, +[R] {55}}A5 =0, -k + [R]{iZZ}

AO
EERILv
B

S +kg+[R]{1/Z}
At 1/1
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(3-1-74)

(3-1-75)

(3-1-76)



Here are the steps to get the restoring force from the deformation:

A0,
Step 1. Obtain nodal deformation
A,

Step 2. Calculate AJ , update O, and calculate the damper force Q,

At A
Step 3. Calculate 41 and @a
Aty Ap,

. . M, Ag,
Step 4. From the nonlinear hysteresis, get nodal force from
M, Ag,
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3.1.3 SRC Beam

a) Section properties

as

dl

1 di

B : Width of beam, o o o
D : Height of beam,

S : Effective width of slab,

t : Thickness of slab

dl1 : Distance to the center of top main rebars,

d2 : Distance to the center of bottom main rebars,
al : Area of top main rebars,

a2 : Area of bottom main rebars

as : Area of rebars in slab

bl : Width of steel

hl : Height of steel

tw : Thickness of web

tf : Thickness of flange

Figure 3-1-18 SRC Beam Section

Area of section to calculate axial deformation
Ay :BD+(S—B)t+(nE—l)(al+a2+a5+aST)) (3-1-58)

where,

ng=E /E, : Ratio of Young’s modulus between steel (Ej) and concrete (E.)
gy = 2(1)1 — tw)tf +h t, :Area of steel

Area of section to calculate shear deformation
Ag =BD (3-1-59)
Moment of inertia around the center of the section

3 _ 3 2 2
[, =B OB ppfo LY (s—BY D-L-g| +
12 12 2 2

<nE—1>a1<d1—gf+<nE—1>a2<D-d2_g>2+<nE_1>aS(D_§_g]2+

\blhl3 — (b —1,)(h _th)3
(n; =1) 2

(3-1-60)
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where, g is the center of beam section calculated by

- BD?/2+(S—B)Y(D—1/2)+(n, —1)ad, +a,(D—d,)+ay(D—t/2)+ag,D/2)

Ay
(3-1-61)
b) Nonlinear bending spring
Hysteresis model of a nonlinear bending spring is the same as RC beam.
Crack moment force
For reinforced concrete elements, the crack moment, M, is calculated as,
M. =056\c,2,, Z,=1,/¢g when tension in top main rebars (3-1-62)

M., =056 0c,2,,, Z,=1, /(D - g) when tension in bottom main rebars  (3-1-63)
where,
O, : Compression strength of concrete (N/mm?)

Z,,Z, : Section modulus

el»

Yield moment force

The yield moment, M , is calculated as,

My =My1’2,RC +My,S (3-1-64)

where

M ,, ; g : Yield moment of reinforced concrete (3-1-65)
M, rc =09a,0, (D —d, )+ 0.9a50, (D —t/ 2) when tension in top main rebars
M, rc =0.9a,0, (D —-d, ) when tension in bottom main rebars
where,
o, : Strength of rebar (N/mm?)

M, = I:bll‘f (h—t,) —i—%l‘w(h1 - 2tf)2 :|Gy,S : Yield moment of steel (3-1-66)
where,
O,s : Strength of steel (N/mm?)
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Appendix 3.1:

A-1. Hysteresis of Degrading Trilinear Slip Model

In OPTION menu in Beam Editor, you can control the shape of hysteresis loop.

Beam Editor P
BEAM
=
= ize (mm)
et B [300 d1 [40 sLe mERL
e D p . - .
B2 _ D |BUD dz |4D Beam Option Editor &J
B3 E Tz
B4 4
5 | 150 I
B3 B BEAM OPTION
BE
B7 o
gg e 1. Amplification Factor for Steel Strength [0,2] 11
B10 TOP 2 [=f-Hoz0 [5] (NImm2)
B11 2. Rs : Effective Slab Ratio [0,0.5] 01
B12 BOTTOM 2 «|- |D20 - SD | 295
gﬁ 3. R1: Stiffness Degrading Ratio [0,1] 0.5
B15 Shear Reinforcement Bar
B16 4. R2 : Slip Stiffness Ratio [0,1] 0
B17 |2 -|- |p13 ~|-@ [120 ~| sD |295
R1z 7
5. R3: Strength Degrading Ratio [0,1] 0
Copy Slab Reinforcement
- Ut - 0.02
|1 j |D10 J-@ |150 j aD |295 6. Ru : Ulimate Rotation Angle [0,1]
Concrete { Nimm2 ) 7. KplKy : Stiffness Ratio over Ry [0, 1] 0.001
Fc |24
OFTION 8. Ku/Ky ® Stifiness Ratio over Ru [-1, 1/1000] 0.001
oo | x|

R : Effective Slab Ratio
As described in Eq. (3-1-8), when tension in slab side, the yield moment of beam , M o is
M, =09a,0, (D-d,)+09a,0,(D-t/2)
where, ais the area of rebars in effective width of slab, S,, which is defined as Eq.(3-1-17),
Sy =1L,

1, (R, inthe menu) is the effective slab ratio , the default value is 0.1.

Depending on the effective slab ratio R, the yiled moment A  and the yield rotaion R will change together

as shown in the Figure below, since the tangential stiffness at the yield point, K ,» 1s assumed to be the

same.

R, :Ultimate rotation angle to define the maximum moment before degradation. The default value is 1/50.
K, : The stiffness after the yield rotation angle, R .
K, : The stiffness after the ultimate rotation angle, R, .

It can be the negative value to consider strength degradation, however, the default value of the ratio K, / K )18
1/1000 without degradation.
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Effective slab ratio Rs
(n, in Eq.(3-1-1

Stiffness over Ru
uld be negative)

=
L IR

y u

Ultimate rotation angle
(recommended over 1/50)

R, : stiffness degrading ratio in the trilinear hysteresis is 0.5. (0: no degradation)
R, : slip stiffness ratio in the trilinear hysteresis is 0.0 (0: no slip).

R, : strength degrading ratio in the trilinear hysteresis is 0.0.

Those parameters control the shape of hysteresis loop as descrived in Egs. (3-1-18) and (3-1-19). That is,

e (x=R))

3?‘
Il
7\
|
N

More detail rule in the hysteresis loop is described in the following sections:
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1. Elastic range

fy(1)
fe(1)
sO(1)
1
s0(2)
J )
9 Initial stiffness, s0, is calculated from
sO(1) =fc(1) / de(1)
1y(2)

2. From crack point to yield point

sy

(drm(1), frm(1))
unloading point

towards the maximum point of the other side

(drm(2), frm(2))
unloading point
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3. Loading on the primary curve after yielding

xdm xd0

(drm(1),frm(1))
4 —>

ssd

‘/
(drm(2),frm(2))

(du,fu)

xdm

If the displacement is less than the degrading point (du, fu),
the unloading point will the target point (drm, frm)

The stiffness of unloading. ssd, will be calculated from ssd =

a

/s

d

y

dy

, where a@is the parameter to control the stiffness
drm

degradation depending on the ductility factor, (drm/dy). The default value of is @ = 0.5

If the displacement is over the degrading point,
intersection of the LINE1 (degrading line)
and LINE2 (unloading line) will be the target
point.

If the force is lower than 0.1fy, intersection of
the LINE1 (degrading line) and LINE2 (lower
boundary) will be the target point.

fdm

0.1fy

LINE1

(drm,frm)

ssd

LINE1

Lower boundary
LINE2

/
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4. Crossing zero force line

fy

(drm,frm)
—>

ssd

(drm2),frm(2)) ~ (drm(2).fim(2))

.,

(dm@),fm2) 5 /.-
A/ S “., e

_—v

Target point of the other side, drm(2), will be increased
according to the ductility factor, (drm(1)/dy(1)), as follows:
drm(1
drm(2)=| 1+ 7/J drm(2)
dy(1)

where v is the parameter to control the strength degradation.
The default value is y=0.0 (no degradation).
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5. Calculation of slip point

(drm(2), frm(2) )'.‘1'"-.‘

After crossing zero force line, the stiffness will be
calculated as:

| fm@) |4y
\drm(2) — xd 0| drm)|

where f is the parameter to control the slip ratio. For the
default value (3=0.0), it will be no slip and towards the
maximum point.

drm (@), frm(2)) /0"

(drm(2), frm(2))

(dsl, fsl)
LINE2 8
srm

deo
6

ss|
The stiffness will change at the intersection of
LINEl and LINE2. After the intersection point,
(dsl, fsl), Level 8 will be towards the maximum
point.

ssd ssd

f 7 xdo
e 6

Stiffness unloading from Level 6 (Level 7) and
stiffness unloading from Level 8 (Level 10) is the
same as the unloading stiffness, ssd ( Level 5).
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dslp = s3%xd0/ (s3-s2)

After crossing zero force line from Lavel 7, Level 9 will be towards the
maximum point. Stiffness unloading from Level 9 (Level 11) is the same as
the stiffness of ssd (Level 5).
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3.2 Column
3.2.1 RC Column

a) Section properties

P

al

~

A\

I @

LB | ’

B : Width of column,

D : Height of column,

dl : Distance to the center of x-direction main rebars,
d2 : Distance to the center of y-direction main rebars,
al : Area of x-side main rebars,

a2 : Area of y-side main rebars,

ac : Area of corner main rebars

Figure 3-2-1 RC Column Section

Area of section to calculate axial deformation

Ay =BD+(nE —l)(a1 +a, +ac)
Area of section to calculate shear deformation
A,=BD/x, k=12

Moment of inertia around the center of the section

DB? B :
1, = +(nE—1)(aC+al)(5—d1]

12

3 2
I, =BD +(nE —IXaC +a2{§—d2]

12
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(3-2-1)

(3-2-2)

(3-2-3)
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b) Nonlinear bending spring

Hysteresis model of nonlinear bending spring is defined as the moment-rotation relationship under the
anti-symmetry loading in Figure 3-2-2. The initial stiffness of the nonlinear spring is supposed to be infinite,

however, in numerical calculation, a large enough value is used for the stiffness.

U Moment distribution

M
M , M M
M 5 L —0 My =0
6EI  _

M, |- : // ko = _I_ + M,

ko \ki =ak N

00 ey 9 2 ¢c ¢y ¢

Elastic element Nonlinear bending spring

Figure 3-2-2 Moment — rotation relationship at bending spring

The crack moment, A is calculated as,

ND
MC =0.56 UBZE'F? (3-2-5)
where,
o, : Compression strength of concrete (N/mm?)

Section modulus
Axial load

2 mN

127



The yield moment, M , Is calculated from the following formula under the axial load, N

if(0O<N<N,)
N
My = O.SatO'yD +0.5ND| 1- (3-2-6)
bDo,
lf‘(Nb <NSNmax)
N_ —-N
M, =(0.8¢,6,D+0.12bDc, | —mx = (3-2-7)
Nmax - Nb
where, N, is the balance axial force,
N, =0.4bDo, (3-2-8)
and N, isthe maximum axial force,
N ®bDoy + A0, (3-2-9)

The tangential stiffness at the yield point, & , » is obtained from the following equation,

k=aK, K, == (3-2-10)

where,

a, s the stiffness degradation factor at the yield point, which is obtained from the following

empirical formulas:

a, =(0.043+1.64np, +0.043a/ D+0.3257,)(d / D)’, (2<a/D) (3-2-11)

a, =(~0.0836+0.159a/ D +0.1697,)(d / D)’, (1<a/D<2)  (3-2-12)

where,

D, : Tensile reinforcement ratio
p, = (ac +a, )/ (ZBD) (when tension in x-main rebars)

p, = (a . ta, )/ (2BD) (when tension in y-main rebars)

a/D : ~ Shear span-to-depth ratio (=//(2D))
d : effective depth
d = D-dl (when tension in bottom main rebars)
d=D-d2 (when tension in upper main rebars)
N
o Axial load ratio
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The yield rotation of the nonlinear bending beam, ¢y , is then obtained from,

M
¢,= [aL—IJK—y (3-2-13)
0

y

Reference:
AlJ Standard for Structural Calculation of Reinforced Concrete Structures, Architectural Institute of Japan,
2018 (in Japanese)
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Case 1: In the case that bending springs in x and y directions are independently defined

X-Z plane Y-Z plane

'
M',

Figure 3-2-3 Element model for column

The rotational displacement vector of the nonlinear bending spring is defined independently,

¢5yA zfyAMyA, ¢, =f M, atendA (3-2-14)

¢yB = fyBMyB’ $p=/fzM, atendB (3-2-15)

where, f ., f., f5>and f, are the flexural stiffness of nonlinear bending springs at both ends of

the element, and

fyA = l/kyA ) Ju= l/kx ) fyB = l/kyB ) Ju= l/ka (3-2-16)

The rotational displacement vector of the nonlinear bending springs will be

.4 M, S M,
" M, S M,
| ) o] o
do| L0 Lrwll]mr fn M,
. M, Ss M,
€25 N', L 0[N
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The hysteresis model for M —¢ relationship is the degrading tri-linear slip model as used for the

hysteresis model of the bending springs of the RC beam.

B

9,

¢m

(3-2-18)

i
BN A

Figure 3-2-4 Degrading Tri-linear Slip Model
(0=0.5, f=0.0 and 1=0.001 as default values)
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Case 2: In the case that nonlinear interaction between moment and axial components is considered

To consider nonlinear interaction among M  — M M N _, the nonlinear bending spring at the member

end is constructed from the nonlinear vertical springs arranged in the member section as shown in Figure

3-2-4.

zB’ z

Z

YB’ xB
A

M}B9¢yB

B 42¢
A
. elg X,

MyA’ ¢yA
MA’ ¢XA

zA’ z

Figure 3-2-5 Nonlinear bending springs

Displacement of the i-th nonlinear axial spring is,
& =& —yp +x9,
Equilibrium condition in the nonlinear section is,
Zk,g,x, = Zk,. (6. = v, +x,0,)x,
M = —Z ke, = —Zk,»(gz — V.8, + X8,
=Yk = L k(e - v +x4)

In a matrix form

M, lzki‘xiz - Zki'xiyi Zkixi 9, &,

M'x = zkzylz _Zkiyi ¢x :[kp ¢Jx
N sym. Dk, & &
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Therefore

¢y M'y M'y

gt =k, Fyme L=[r ) m, (3-2-22)
£, N', N',

For both ends
¢yA M'yA
¢xA M'xA
0 1

ng — |:|:fPA] :| N'ZA (3_2_23)
¢yB 0 [pr] M yB

¢xB M'xB

ng N'zB
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¢) Nonlinear vertical springs

The nonlinear bending spring is constructed from the nonlinear vertical springs arranged in the member
section as shown in Figure 3-2-5. This model is called “Multi-spring model” proposed by S. S. Lai, G. T.
Will and S. Otani (1984) and modified by K-N. Li (1988). The section is devided in 5 areas; where 4 corner
areas have steel springs and concrete springs and the center area has one concrete spring.

The strength and the location of nonlinear springs are obtained from the equilibrium condition under

the balance axial force, N .

4 — 1
® .
R A, ——_ R
» X » X
J_\j ®
3 (O Concrete spring
® Steel spring
v V‘
y y
(a) Original column section (b) Multi-spring model
(tension) (tension)

S|
4/ /[P,

(compression) (compression)

(c) Hysteresis of steel spring (d) Hysteresis of concrete spring

Figure 3-2-6 Nonlinear vertical springs

Strength of steel spring
The strength of the steel spring is one-forth of total strength of rebars in the section, i.e.,
Sy =

A, o,

3-2-24
1 ( )

where,

Total area of rebar in the section

o : Strength of rebar
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Strength of concrete spring
As shown in Figure 3-2-6, the strength of the corner concrete spring is obtained from the equilibrium
condition in the vertical direction under the balance axial force, N, = —0.4bDo ,, that s,
N
S = Tb =0.2bDo, (3-2-25)

Therefore, the area of the corner concrete, A, , is,
A4 = # (3-2-26)
(0.850,)

..............

y

Figure 3-2-7 Equilibrium condition in the column section

The area of the center concrete, A, , is the rest of the area of the section,
4, =bD-44, (>0) (3-2-27)

The strength of the center concrete spring is then obtained as,
. fy2 =0.85k0 , 4, (3-2-28)

where, k is the confined effect (k = 1.3) of the concrete.

Location of vertical springs

The distance between the corner springs, Xx_, is obtained from the equilibrium condition regarding the

52

moment force in Figure 3-2-7,
M, =x,2.f,+f,)=x2f, +05N,) (3-2-29)

Therefore,

y
X, =—- -/
y 2Sfy +0.5N, (3-2-30)

Note that M, is calculated from Equation (3-2-6) for the balance axial force, N=N,.
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Example)

To verify the efficiency of the Multi-Spring model for the column element, the M-N relationship is

compared between MS-model and theory using one column element. The column section is shown in the

Figure below:

Column Editor

e

Firstly, the strengths and locations of vertical springs are calculated as

COLUMN

Type Size (mm)

B [ L] L]
N~ [s00 ol b
c2
03 D . ] L] \)
c4 1
C6
g g Vertical Reiforcement
g190 CORNER 4 - ID22 ¥| opymm2)
g]; OTHERS |4 ~ |- |D22 ~ 295
C13 )
c14 Shear Reinforcement
C15 sD (mem2)

2 x]-|p6 x|-@|50 -] [295
Copy

Concrete (N/mm2)

Fc |24

ADD oK |
Figure 3-2-8

N=1000kN

300cm

—

50cm

a,=15.484 (cm®) o, =1.1f,=3245(kN/cm®) o5 =2.4(kN/cm?)

N, =0.4bDo, = 2400 (kN)
,f, =251.2 (kN)

In the range (0 <N < N,), the Multi-Spring model gives

M, =(2,f, +0.5N)x,

Npax =Dy + 4,07, = 6502 (kN

S =1200 (kN) f,, =390 (kN) x, =30 (cm)

which is plotted as the solid line in Figure 3-2-8. The results of Multi-Spring model give smaller values

than theoretical results in the range 0 < N < Nb.
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M-N relationship

6000

Theory
5000 Multi-Spring |-
4000

N (kN)

3000 >
2000

Under—estim%
1000 /
0 L L

0 10000 20000 30000 40000 50000 60000
M (kN*cm)

Figure 3-2-9 Comparison of M-N relationship

K-N. Li (1988) proposed to use the following formulation for deciding the location of vertical springs
instead of Equation (3-2-29), as follows:

M,
X, =— 2 (3-2-31)
2.f, +0.5N,

where, N, is the axial force from the dead loads and the live loads acting on the column (N < N,),

and M yo 1s the yield moment under the axial force N, , that is:

N,
M, :0.8at0'yD+O.5NOD[l— 0 j (3-2-32)
bDo,

For the example column, assuming N, = 1000 (kN),

x, =35.8(cm)

The yield moment is plotted as the solid line in Figure 3-2-9. It improves the results of Multi-Spring model.
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N (kN)

M-N relationship

6000

— Theory
5000 Multi-Spring
4000
3000

2000 /

1000

0 20000 40000 60000 80000
M (kN*cm)

Figure 3-2-10 Comparison of M-N relationship
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Yield displacement of vertical spring

—2f, \/ V\ v, Compression

v

Figure 3-2-11 Equilibrium condition under the axial force Ny

From the equilibrium condition under the axial force N as shown in the above Figure, the yield
displacement of the tension side steel spring,  d ,» 1s obtained as follows:
s dy + dC = ny

_fe
‘ sfy+afy n
N, +2Sfy
¢~ > (3-2-33)
d,=—

s N, +2Sfy
14—
2Sfy +2cfy

The yield displacement of concrete spring, . d ,» is assumed to be the same as that of the steel spring,

d,=d, (3-2-34)
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d) Nonlinear shear spring
d-1) Force-deformation relationship

There are two nonlinear shear springs in x and y directions. Hysteresis model of the nonlinear shear springs

is the same as that in the beam element.

Yield shear force

The yield shear force, Qy is calculated as,

0.053p,"% (o, +18) .
= ! +0.85 . +0.1 b- 3-2-35
2, { M /(OD)+0.12 VP Oy TE100 (0] (3-2-33)

where,
D, : Tensile reinforcement ratio
o, : Compression strength of concrete
M/(QD) ~ Shear span-to-depth ratio (=//(2D))
D : Shear reinforcement ratio
o, : Strength of shear reinforcement
o, : Axial stress of the column
J : Distance between the centers of stress in the section (= (7 / 8)d ).

Crack shear force

The crack shear force is, (., is assumed as,

0.=0.30, (3-2-36)

Ultimate shear force

The ultimate shear force is, Q,, is assumed as,

0,=0,+k, (su - Sy) (3-2-37)

Qy ky3
Qu o
Q. | 0.001k,
- ky=GAl
S, s, S, )

Figure 3-2-12 Shear force - deformation relationship
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Crack shear deformation

The crack shear deformation is obtained as,

9.

3-2-38
oA ( )

s,=yd, y.=

Yield shear displacement

The yield shear deformation is assumed as,

1

=— 3-2-39
250 ( )

sy:yyl’ 7}’

Ultimate shear displacement

The ultimate shear deformation is assumed as,

1
s =vl, =— 3-2-40
W=Vl Y 100 ( )

The poly-linear slip model (see Appendix) is adopted for the hysteresis of the shear spring.

0

Figure 3-2-13 Poly-linear slip model for shear spring

The parameters on the backbone curve can be changed in the Option Menu of Column element. The default

values are given as follows:

Manlinear Shear Spring

Qc= |03 Cy (K0 = GA)
Ry= |0.004 - Yield shear angle
Ru=|0.01 - Ultimate shear angle
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Example)

Column Editor X
COLUMN
Type Y -side
Size(mm)——— | T === -

C2 B 600 a1 [40 o| | X-side
C3 1 "
c4 D [600 d2 (40 e =
C5 d1
Cc6 L | 5
CT ! :
c8 ~Main Reiforcement Bar
c9 corner 4 - |D22 ~
C10 N=500kN
cil _cj >
£ Xside |2 ~|- [D22 +| Nmm2)
cid Ysice [2 ~|-[p22 +] sD [205 ; : .
Cc15 '
~1A  Shear Reinforcement Bar

Copy | X-side [2 ~|- [D13 ~|-@ 100

3000mm
Yside [2 ~|- [D13 ~|-@ |100
sD [205
Concrete ( Nimm2)
Fe [2¢ | OPTION gamlm
mpot | Expot | aoD | ok |
0 ={O'OS3 P~ (05 +18) +0.85,/p, o, +O.lao}b- j (3-2-35)
y M /(OD) +0.12 v S

where,
b =600 (mm), j=0.8%d =480 (mm)
p,=0.32 (%), 0,=240 (N/'mm?), M/(QD)~1/(2D)=3000/(2-600)=2.5
p, =100-a,/(b-x)=0.0042, a,=2DI13=253 (mm?), x=100 (mm)
0,,= 1.1(295)=324.5 (N/mm?), o= 1.388 (N/mm?)

0,=479.2 (kN)
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d-2) Shear spring model 1

Case 1: In the case that shear springs in x and y directions are independently defined

7L>Qx
3

wl:/ S, z
Sy
<7L -0, y
-0,

Figure 3-2-14 Nonlinear shear springs in column

The force-deformation relationship of shear spring is

k, O
ol vt
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d-3) Shear spring model 2

Case 2: In the case that nonlinear interaction between shear and axial components is considered

'
NzA

Figure 3-2-15 Nonlinear shear springs

The force-deformation relationship of shear spring is

0, t=|k, 3, (3-2-42)
NZ 8SZ

The stiffness matrix [ksp} is obtained by the Plastic Theory as explained in the Appendix (not

implemented).
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¢) Modification of initial stiffness of nonlinear springs

The same modification can be done for the nonlinear springs of column element as described for those of
beam element by reducing the initial stiffness of the nonlinear spring and increasing the stiffness of the

elastic element as shown in the following figure:

7‘/B 7
9
0

0

Py T

AN

u Moment distribution

M
M , M M
M} 4 L//do My —°
6EI  _
M, (1 ky = _Z_ + M,
@Na ko Nl
0. 9), o r 9. ¢y ¢
Elastic element Nonlinear bending spring
Increase Reduce
stiffness stiffness
M M
H / y H :
+
MC
¢
Elastic element Nonlinear bending spring

Figure 3-2-16 Modification of moment — rotation relationship
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Introducint the concept of “plastic zones”

- E A
k(l) — 1 1
b

where E; :

the material young’s modulus, A4;

: the spring governed area, and p: :

(3-2-43)

plastic zone. When p_ — 0, it represents the infinite stiffness for rigid condition.

, the initial stiffness of the i-th multi-spring can be expressed as,

the length of assumed

From Equation (3-2-20), when we consider the flexural flexibility in x-z plane, the flexibility matrix for the

nonlinear MS section is,

VZ%ﬁ 0
/3

¢}’ — i
£, - 0

M,
N',

}z

pZ/ZEiAl.xiz 0
l 0 pZ/ZEiA

M, 3-2-44
N (3-2-44)

Also, introducing the flexibility reduction factors, y, (< 0), 12 (< O), 7, (< O), the flexibility matrix of

the elastic element is,

ro
"3BT ek,
[r.]=| - I py I (3-2-45)
‘ 6EI, '’3EI,
ll
I Yo EA
Making the modified flexibility matrix to be identical to the original one,
- A [
I A D1 -+ 7/ - 0
- 0 1
3EI, 6L, Z E4, 3EL, 6L,
l’
0 = —+ }/2 0
3EI, Z E,
l'
sym. Pz P>
L EA_original Sym. ZE A ZE A 7/0
(3-2-406)
Since Z A x,.z ~1, this gives the flexivility reduction factors as:
3 3 1
7 =1- l,pzl’ V2= l,pzzo Yo :1_;(1%1 +p22) (3-2-47)
Adopting p_, = p_, = E as discussed for beam element, the reduction factors will be:
v, =7,=0.7, y,=038 (3-2-48)
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3.2.2 Steel Column

a) Section properties

e
! !
tr %)
H —e
*—o tw *—e tl
L B | L B d L D
T T T | T

B : Width, H:Height, tu,ts ti, to, t: Thickness

Figure 3-2-17 Steel Column Section

Area of section to calculate axial deformation

A, = total area of section (3-2-49)
Area of section to calculate shear deformation
A= ( ) (3-2-50)
A, =054,

Figure 3-2-18 Area of section for shear

Moment of inertia around the center of the section
1) H section

BH® —(B—t,)(H -2t,)’

I= = : along strong axis (3-2-51)

et B+ (flz “ 28 . along weak axis (3-2-52)
2) Box section

I BH® —(B-2t,)(H -2t,)’ (3:2-53)

12
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3) Circle section
72' 4 4
I==—|D"-(D-2t 3-2-54

Moment of inertia for torsion
1) H section

2Bt +(H -2t,)t,’
J=" (3 Il (3-2-55)

4) Box section

_20t,(B—1,)*(H —1,)’

J —— (3-2-56)
BHtt, —t,” —t,
5) Circle section
J= % [D“ ~(D- t)“] (3-2-57)
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b) Nonlinear bending spring

To consider nonlinear interaction among M  — M M N _, the nonlinear bending spring at the member

end is constructed from the nonlinear vertical springs arranged in the member section as shown in the

following Figure.

NZB s ng

\/@\ijB b ¢xB i
MyB s ¢yB

MyA 4 ¢yA
W)ﬂ b ¢xA
NzA b ng

Figure 3-2-19 Nonlinear bending springs

Displacement of the i-th nonlinear axial spring is,
& =& —yp +x9,

Equilibrium condition in the nonlinear section is,
M = Zkigixi =2 k(. =y, +x9,)x,
M' == kiEy, == ki(e. —yig +x4,),
N.=Y ke = Y k(e — v, +x4,)

In a matrix form

M, lzkixiz - Zki'xiyi Zkixi 9, &,

M'x = zkzylz _Zkiyi ¢x :[kp ¢Jx
N sym. Dk, & &

Therefore
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P, —[kp}l M' = [fp M, (3-2-61)
&, N', N',
For both ends
¢yA M'yA
¢XA M'xA
£ 0 || N
zA — |:|:fPA] :| 'zA (3-2-62)
¢yB 0 [pr] M B
¢xB M'xB
ng N'ZB

Hysteresis model of nonlinear bending spring is defined as the moment-rotation relationship under the
anti-symmetry loading as shown in Figure 3-2-20. The initial stiffness of the nonlinear spring is supposed

to be infinite, however, in numerical calculation, a large enough value is used for the stiffness.

U Moment distribution

M
M M M
M, M, /O
k Nk, R
0, 0 9, ¢
Elastic element Nonlinear bending spring

Figure 3-2-20 Moment — rotation relationship at bending spring
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Yield moment force (full plastic moment)

1) I shape
T !
tr
H
—e
b B |
T T

a) When the neutral axis is inside the web, i.e, N <A o =t (H-2¢,)0,

M, =M, —y't,o, (3-2-63) Btyo,
EZW(H—th)O'y
where
1
M, {Bt(H—t)+ ¢ (H - 2t)} A_)
_ N MyO
Yo 2t,0, H

b) When the neutral axis is inside the flange, ie., N > 4,0, =¢,(H-2t,)o,

H H
M =Bl——y, | =+, o 3-2-64
y (2 y°j(2 y°jy (268 Bﬁ—yo

where

1 N—Ny
y‘):E Bo v
y
N, =[2Bt, +1,(H-2, )P, U
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2) H shape

a) When the neutral axis is inside the web, i.e., N<A4 0, =t Ho,

M,=M -y, Ho, (3-2-65)
where
1 2 1 2
M,=|-Bt, +—t (H=-2t) o,
2 4
N
Yo 2Ho . .
B
b) When the neutral axis is inside the web, i.e., N <A, 0, =t Ho,
B B 1
M, _2tf(5_yoj(5+%)jo-y (3-2-66) tf(EB—yojO'y

where

1(N—Ny J
Yo =75 +B
2 thay

N, =[2Bt, +1,(H-2, )P,

B
3) Box shape
T !
t2
H
—e {;
b B d
T T
a) Moment around x-axis
M, =M, (Ishapeby changing t, —2t,, t, —>1,) (3-2-67)
b) Moment around y-axis
M, =M, (Ishape by changing t,—>2t,, t, —>t, B<>H) (3-2-68)
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4) Circle shape

*—o tl
L D )|
T T
N
M, =M, co{%] (3-2-69)
y

Yield rotation

The yield rotation is

0, =M, Ik, k :6l£ (3-2-70)
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¢) Nonlinear vertical springs
The nonlinear bending spring is constructed from the nonlinear vertical springs arranged in the member
section as shown in Figure 3-2-21. This model is called “fiber model”. The section is devided in several

areas which have steel springs.

30°
. — .
0 0 o0 9lo o o o do R
| o Y4
(H-2tr)/5 { O t O tt O o - ! o
< O O VS
O 1 o)
H o O O —ot Y
—e ¢, —e {; o ,/: o
O O O S
O e 0 Oy 1 ©
/010
w O O O O O O O O O O ’ |
) B ) L B d
I A T A ]J= 'll
B : Width, H:Height, tu,ts ti, to, t: Thickness
tension)
fy’l ...... (
d b
(compression)
Hysteresis of steel spring
Figure 3-2-21 Nonlinear vertical springs
Strength of steel spring
The strength of the i-th steel spring is,
foi =40, (3-2-71)
where, 4, : the spring governed area, o : the strength of steel
Yield displacement of steel spring
The yield displacement of the i-th steel spring is,
d,,=f,.ky. ko =E4, (3-2-72)

where Es : the young’s modulus of steel
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The same modification can be done for the nonlinear springs of column element as described for those of

beam element by reducing the initial stiffness of the nonlinear spring and increasing the stiffness of the

elastic element as shown in the following figure:

M
Lo -
AB
r )9
0

§
L

Moment distribution

M
M M M
M, |—F
6El = : T
ko=—=
0, Z 9, ¢
Elastic element Nonlinear bending spring
Increase @ Reduce @
stiffness stiffness
M M
My - ";yo
+ j |
), )

Elastic element Nonlinear bending spring

Figure 3-2-22 Modification of moment — rotation relationship

Introducint the concept of “plastic zones”, the initial stiffness of the i-th multi-spring can be expressed as,

EA
_ L4 (3-2-73)

ko
p.

where E; : the material young’s modulus, 4; : the spring governed area, and p- : the length of assumed
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plastic zone. When p_ — 0, it represents the infinite stiffness for rigid condition.

When we consider the flexural flexibility in x-z plane, the flexibility matrix for the nonlinear MS section is,

y l/z:k(’)xl2 0 M
T s

D. Z:El.Al.xi2 0

M, 3-2-74
N (3-2-74)

ZO pZ/ZEiA

Also, introducing the flexibility reduction factors, y, (< 0), 12 (< O), 7, (< O), the flexibility matrix of

the elastic element is,

_7 ; o -
'3EI,  6EI,
A A
=| - (3-2-75)
i 6EI, *3EI
v !
i " EA
Making the modified flexibility matrix to be identical to the original one,
- A A
! ! P 73 - 0
- 0 !
3EI, 6L, z EA 3EL, 6EL,
l’ '
= >+ ;/2 0
3EI, Z Et 3EI,
l'
Sym. P2 P:
L EA_ original Sym' z E A Z E A 7/0
(3-2-76)
This gives the flexivility reduction factors as:
3 3 1
= l,pzl’ 7, =1- 7 P2 7o :1_;(1%1 +p22) (3-2-77)
Adopting p_, = p_, = E as discussed for beam element, the reduction factors will be:
7nw=7,=07, y,=03 (3-2-78)
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3.2.2 Column with direct input

X-Z plane Y-Z plane

N'.
4: l‘ =
TVZ\

Figure 3-2-23 Element model for column

In case of direct input for Moment-Rotation relationship, we neglect nonlinear interaction among
M -M y — N_ and define the flexural stiffness of nonlinear bending springs in X and Y directions

independently. The rotational displacement vector of the nonlinear bending springs will be

.. M, _fyA | M,
o M, S M,
S| _ {[pr] 0 :| N', _ 0 N'., (3-2-79)
Do 0 [pr] M, S M’
D M, Jis M,
€.p N'g L 0] N,

The displacement vector of the column element is obtained as the sum of the displacement vectors of

elastic element, nonlinear shear springs and nonlinear bending springs,

' ' '
0 4 (Y ¢yA 17,4 M A
[ ' '
9 yB T yB ¢yB nyB M yB

o' ' 1) n M’
A A A x4

iy +47 +47 =k (3-2-80)
v ' ¢ A m

xB 2 xB xB 77 xB xB

' " '
o' 0", g, 0 N',

[ ' '
0 z 0 z J elastic element O bending spring O shear spring T z
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The flexural matrix [f.] is;

I 1

I 1

+ +
S 3EI, kI

sym.

- +
6EI, kI

Jut

I 1
_ + _
3E[/V kSX l'z

St

159

0
I 1 I 1
+ - +
3EI, kg I* 6EI, kI
I 1
+—
S 3EI, kI
z
EA
(3-2-81)




3.2.3 SRC Column

a) Section properties

dl
d2
al
a2
ac
bl
hl
tw
tf

dl

b,

{ﬂ [

f« Type 1

=

i Type 4

_—————

: Width of beam,

: Height of beam,

: Distance to the center of x-direction main rebars,
: Distance to the center of y-direction main rebars,
: Area of x-side main rebars,

: Area of y-side main rebars,

: Area of corner main rebars

: Width of steel

: Height of steel

: Thickness of web

: Thickness of flange

Figure 3-2-24 RC Column Section

Area of section to calculate axial deformation

Ay =BD+(nE —1)(al +a,+a, +aST)

where,
ng=E_IE,
Ay =N, (bl
ny
ny
ny

i Type 5

(3-2-82)

: Ratio of Young’s modulus between steel (E) and concrete (E.)

- tw) t,+nht, :Area of steel

=2, n,=1: Typel, Type2,
=4, n,=2: Type3
=3, n,=2: Typed, Type5

Area of section to calculate shear deformation

Ag =BD/«,

Kk=1.2
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Moment of inertia around the center of the section

DB’ B
I, = > +(n, -1) (a +a1)(2 j S’yJ (3-2-84)
BD’ D
I = +(n, —1 a +a 3-2-85
c=y 2)(2 j J (3-2-85)
where
I s : Moment of inertia of steel
IS,x IS,y
b1,
1:f 1 1
o I =—(bnt =6 =t \m -2, F) | 1, =—(2e,b° + -2, 00,
12 12
Type 1
t

s
= I 1, I,

Type2 hl

bl
%}1 I, +1, I, +1,
Type 3
“"tflhi Y
I, +1, I, +1,+A4,
—
Type 4 hl
tf'ﬂ' Y
tw Ih:l I,+[H+AH(51) I, +1,
Type 5

b) Nonlinear bending spring

Hysteresis model of a nonlinear bending spring is the same as RC beam.

Crack moment force

For reinforced concrete elements, the crack moment, M is calculated as,

M, =0.56,/0,Z, +% (3-2-86)
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Yield moment force

The yield moment, M y is calculated as,

My :M),’RC +My’s (3-2-87)
where
M JRC G Yield moment of reinforced concrete
N,
My’RC =0.8at0'yD+0.5NbD 1- 'Do (3-2-88)
B
M b G Yield moment of steel
My,S,x My,S,y
b1
—r
M o M JH
Type 1
T t
i ML M, M,
Type2 hl
b1,
tf
F Ilhil M, +M, M+ M,
Type 3
Ty tf:[
b1
My,+MyH My,+MyT
—
Type 4 hl
b1,
tf
w [ M, +M, M, +M,

Type 5

1
M, = ‘:bltf (h—t;)+ th(hl - 2tf)2}ay’s

1 1
M, [Ebﬁ S+ —zwz(h1 —2t f)}a} ¢

btf(h )+ L o tf)

%—%@

h, b,
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Appendix 3.2:

A-1. Hysteresis of Steel and Concrete Springs of Multi-Spring Models for RC elements

a) Steel spring

For the steel spring, the maximum-oriented model is adopted for the hysteresis before yielding, and the

tri-linear model is adopted after yielding as shown in Figure 3-2-15.

(a) before yielding point (b) after yielding point

Figure A-1-1 Normal tri-linear model for steel spring

The hysteresis of steel spring has the degradation point at the forces, v f, and ¢ f , where v and ¢
are the arbitrary parameters (V <lLg¢< 1). The STERA 3D Program adopts the values as:

v=1/3, ¢=0.5 (A1-1)
Then, the yield deformation,  d ; , may be obtained by Equations (3-2-31) and (3-2-13) considering the
reduction factor y .

*

X,
d,=—70"
sdy 1 No 427, (A1-2)
+7
2.0, +2.1,
L (1 1M,
L et Al13
{1 s
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b) Concrete spring
The hysteresis of concrete spring is also defined as tri-linear hysteresis model as shown in Figure 3-2-16.
After compression yielding, strength degradation is considered by reducing the strength of the target point

in reloading stage.

dc

fc

fy

(a) hysteresis rule after compression crack point

fc

fy

(b) hysteresis rule after compression yield point

(c) strength degradation rule

Figure A-1-2 Tri-linear hysteresis model for concrete spring
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A-2. Hysteresis of Poly-linear Slip Model for Shear Springs for RC and Masonry members

Reference:

FRAME-D manual, Tohoku University, 1983 (in Japanese)

The poly-linear slip model is defined as the following hysteresis model.

Force
22 S
! (DRX, FRX)
1
.I. v/ e EN -
FC |-- B su
| S SF
! s . —
Lo /828 ;
SC I !
-DU -DY L ! 0.15 FRX :
i 015 FRN § LA DY DU
: | S
-FC
-------------- -FY 4 SE
(DRX, FRX)

_ |FRX|+|FRN|

~ |DRX|+|DRN|
S1=2xSE
§2=1.2xSE

FL1=FL2=0.15x FRX
FL3=FL4=0.15x FRN

(DL1, FL1)

(DRN, FRN)

Figure A-2- Poly-linear slip hysteresis model for shear spring
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3.3 wall
3.3.1 RC Wall

a) Section properties

|
5

y
L, 0,1, : Width of wall,
t : Depth of wall,
Cl,C2 : Side columns,
aw : Area of rebars in a wall panel

Figure 3-3-1 Wall Section

Area of section to calculate axial deformation

Ay = AN,C] + AN,cz +il, + (nE _1)(aw) (3-3-1)
where,

A N.Cl A N.C2 : Area of section of side columns for axial deformation

ng=E_/E, : Ratio of Young’s modulus between steel (£) and concrete (Ec)

Area of section to calculate shear deformation

Ag = Aoy + Ager +tl, 1k, K=1.2 (3-3-2)

where,

Ag c1s Ag s : Area of section of side columns for shear deformation

Moment of inertia around the center of the section

1} ;Y ;Y
L=1+1,+ 12”’2 + Ay ) [%‘j + AN’Cz[ 3‘ j (3-3-3)
where,
1 V.l I C2 : Moment of inertia of side columns
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b) Nonlinear bending spring

For the out of wall direction, each side columns behave independently in the same way as the column
element. Therefore, we discuss here only the hysteresis model in the wall panel direction. Hysteresis model
of nonlinear bending spring is defined as the moment-rotation relationship under the symmetry loading in
Figure 3-3-5. The initial stiffness of the nonlinear spring is supposed to be infinite, however, in numerical

calculation, a large enough value is used for the stiffness.

Moment distribution

M , M M
M, 7 M,
2EI _
M, |\ ko = _Z_ + M.
0. 6, 0 b 4 ¢
Elastic element Nonlinear bending spring

Figure 3-3-2 Moment — rotation relationship at bending spring

The yield moment, M y is obtained from the equilibrium condition in Figure 3-3-6 as,

M, =aol, +05a,0,1, +0.5NI, (3-3-4)
where,

a, : Total area of rebar in the side column

o, Strength of rebar in the side column

a, Total area of vertical rebar in the wall panel

O, : Strength of rebar in the wall panel

N : Axial load from the dead load
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/ L, /

Figure 3-3-3 Equilibrium condition under yielding moment

The crack moment, A is assumed to be,

M, =03M, (33-5)

The tangential stiffness at the yield point, ky , is obtained from the following equation:

k,=0.2K, (3-3-6)

The yield rotation of the nonlinear bending beam, ¢y , is then obtained from,

1 M
) Y ] 3-3-7
9, ( J X, (3-3-7)

y

where, the stiffness degradation factor, « , is assumed as,

y?

o, =0.02 (3-3-8)

168



Case 1: In the case that bending springs are independently defined

Figure 3-3-4 Nonlinear bending springs in the wall

The rotational displacement vector of the nonlinear bending spring is defined independently,
=S M . Pp =fpM 4 iny-direction at Side Column 1

o =JiM . Py =[5 M 5, iny-direction at Side Column 2 (3-3-9)
Dose = FoaeM e s Dose = FrpeM 5. in x-direction at center Wall panel

where, f ., fas fon> Sfupr»and fy e fyBc are the flexural stiffness of nonlinear bending springs

at side columns and the center wall panel of the element, and

S = l/kxAl > Som = l/kal
foz = l/kxA2 ) frBZ = l/kxzn (3-3-10)
fyAc = 1/ kyAc ) S = 1/ k)

Duc M'yAc _fyAc M'yAc
2 M, Sen M,
Pruan M, Sz M,
Ete [f PA] 0 Nl 0 N' .
D,pe 0 [ f pB] M 'yBc fyBc M 'yBc
2 M’ Sfam M’
Pp> M, Saw2 My,
€. pe N L 0] Ny
(3-3-11)
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The hysteresis model for M —¢ relationship is the degrading tri-linear slip model as used for the

hysteresis model of the bending springs of the RC beam.

B
L3 (3-3-12)

Do

4
4,

ol
wy ¢y ¢m_¢x

Figure 3-3-5 Degrading Tri-linear Slip Model
(a=0.5, p=0.0 and n=0.001 as default values)
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Case 2: In the case that nonlinear interaction between moment and axial components is considered

To consider nonlinear interaction among M  — M ) N _, the nonlinear bending spring at the member

end is constructed from the nonlinear vertical springs arranged in the member section as shown in Figure
3-3-2.

y

Figure 3-3-6 Nonlinear bending springs

Displacement of the i-th nonlinear axial spring is,

& =€,tx0, in a wall panel
& =&, — VP, X, e in a side column 1 (3-3-13)
E =&, ~ VP, t+X e in a side column 2
'
N zc? gzc
'
Mo 9.

Figure 3-3-7 Equilibrium condition in the wall panel direction
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In the wall panel direction, all vertical springs in the nonlinear section are assumed to work against the

moment and the axial force. The equilibrium conditions are,

Nc N1 N2
L—
M = Zkigixi + Zkigixi + Zkigixi
i i i

Nc N1 N2
= Zki(gzc +xi¢yc)xi +Zki(gzc _yi¢xl +xi¢yc)‘xi +Zki(gzc _yi¢x2 +xi¢yc)xi
¢yc

x1

Do

g

zc

Nc+N1+N2 }

Nc+N1+N2 N1 N2
:{ Z:kl.xl.2 —Zkixl.yl. —Zkixiyi Zkixi
(3-3-14)
Nc N1 N2
N' = Zkigi + Zkigi + Zkigi

Nc N1 N2
= Zki(‘gzc +xi¢yc)+zki(8zc _yi¢xl +x[¢yc)+zki(8zc _yi¢x2 +xi¢yc)
D

Net+N1+N2 N1 N2 NesN1EN2T) |
:{ Zki'xi - D ky, _Zkiyi Zki:| ¢XI
i i i i 2

&

zc

(3-3-15)
where, Nc, NI and N2 are the number of vertical springs in a wall panel, side column 1 and side column 2,

respectively.

M‘xl’¢xl \0 ﬂ M'x2’¢x2

side column 1 side column 2

Figure 3-3-8 Equilibrium condition in the out of wall direction
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In the out of wall direction, we establish the equilibrium condition for each side column independently. The

equilibrium condition for the side column 1 is,

N1
M, = _Zkigiyi

N1
= _Z ki (gzc - yi¢xl + xi¢yc)yi

¢ ye

y . N1 )
=|:_Zkixiyi Zk’ylz 0 _Zkiyij| ¢X1
i - i x2

gZC
(3-3-16)
Also, for the side column 2,
N2
M, = _zkigiyi
N2
= _Z ki (gzc - yi¢xl + xi¢yc)yi
¢yc
N2 N2 N2 ¢
= [— Zkixiyl. 0 Z:kl.yl.2 — Zkiy,} !
i i i P
gZC
(3-3-17)

In a matrix form

[ Ne+N1+N2 N1 N2 Ne+N1+N2
Zkixiz - Zkixiyi - zkixiyi Zki'xi
M, Ni N : M o o,
M|}1 _Zkixiyi Zkiyiz 0 _Zkiyi ¢y1 ¢yl
M,x =l ' N2 N2 ¢x = [kp ¢x
2 - Zki'xiy[ 0 zkiyiz - zkiyi 2 *
N'ZC i i i SZC gZL'
Nc+N1+N2 N1 N2 Nc+N1+N2
Zki'xi _Zkiyi _Zkiyi Zki
(3-3-18)
Therefore
¢y" M'yC M'yc
¢x1 -1 M'xl _ M'xl
. [kp] M', - [fp M, G-
., N'_, N'..
For both ends
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¢ yAc
¢xA 1
¢XA 2

zAc

¢yBc

¢xB 1
¢xB 2

ngc
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c¢) Nonlinear vertical springs

The nonlinear bending spring is constructed from the nonlinear vertical springs arranged in the member
section as shown in Figure 3-3-6. This model is based on the concept of “Multi-spring model” and
modified for the wall element by Saito et.al. The vertical springs in the side columns are determined
independently in the same way as the Multi-spring models of columns. The wall panel section is devided in

5 areas, and a steel springs and a concrete spring are arranged at the center of each area.

wl

w2
[ L h C LA ]
» L X » [
v
y
(a) Original column section
1 2 6 7
® !
5 o) ® ® X ® e o) 10
© 11 12 1 14 15
3 4 8 9
y (O Concrete spring
® Steel spring
(b) Multi-spring model
f (tension) (tension)
s y ......
(compression) (compression)
(c) Hysteresis of steel spring (d) Hysteresis of concrete spring

Figure 3-3-9 Nonlinear vertical springs
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Strength of steel spring in wall panel
The strength of the steel spring in the wall panel is one-fifth of total strength of rebars in the section,

a w Gwy

Sfy = (3-3-21)
5
where,
a, : Total area of vertical rebar in the wall panel
o : Strength of rebar in the wall panel

wy
Strength of concrete spring in wall panel

The strength of the concrete spring in the wall panel is one-fifth of total strength of concrete in the section,

0.854 o
Sy=—% L2 (3-3-22)
where,
A » : Total area of wall panel section
Op : Compression strength of concrete

Yield displacement of vertical spring in wall panel
The yield displacements of steel and concrete springs in the wall panel are assumed to be the same as those

of the springs in the side columns.

d) Nonlinear shear spring
There are three nonlinear shear springs in x direction in wall panel and y direction in side columns.

Hysteresis model of the nonlinear shear springs is the same as that in the beam element in Figure 3-1-4.

Yield shear force

The yield shear force, Q , 1s calculated as,

0.053p,* (o, +18) _
= +0.85 . +0.1 b- 3-3-23
2, { M /(OD)+0.12 VP Ty TG0 (07 (3-3-23)

where,
b : Equivalent thickness of the wall (z A / L)
j : Distance between the centroids of tension and compression forces ( 0.8/, ,)
D, : Tensile reinforcement ratio (1004, / (b -1 ) (%)
Oy : Compression strength of concrete ( NV / Z A)
M/(QD) Shear span-to-depth ratio (=4 /(21 ,))
=1 (h/(ZZwl) < 1), 3 (h/(21w1) > 3)
)28 : Shear reinforcement ratio
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o, : Strength of shear reinforcement

o, : Axial stress of the column

Crack shear force

The crack shear force is, (., is assumed as,
0 2
C
3

Ultimate shear force

The crack shear force is, O, , is assumed as,
0,=0.

Crack shear deformation

The crack shear deformation is obtained as,

Q.
GA

Sc:ycl’ yC:

Yield shear displacement

The yield shear deformation is assumed as,

1

Sy:yyl’ yy:ﬁ

Ultimate shear displacement

The ultimate shear deformation is assumed as,
1

100

QXC

Figure 3-3-10 Nonlinear shear springs in the wall
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ky3 =0.000k
0, ke S
Qu —T
0. ’
ki= GA/ [
S, S, S, K
Figure 3-3-11 Force—deformation relationship of shear spring
Example)
-y = (=] 4
B T eo < O <=
Unit: mm
v | A Z|¥ T/ weightn) |1000. Height(mm) | 3000. 1F
N=500kN N=500kN N=500kN
— 3000mm
g wa Ijgx
N L
' // — //
600mm

Shear strength of the side column in y-direction Q.= 479.2 (kN) (see Column element)
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Wall Editor X

WALL
Type Size
I | :

1
W3 | |
w4 [
W5
W6
W7
w8
Wo Shear Reinforcement in a Panel
W10 SD (N/fmm2)
w11 2 w|- |ID13 |- 150 295
i1 o=l on -e]
W41
Copy | Concrete (N/mm2 )
Fc |24

0.053p,"% (o, +18)
= ! +0.85 .o +0.lc,tb-j
Q { M /(OD)+0.12 VP Ty 0/

where,
b= AJl, =1652528/660 =250 (mm), j = 0.8/ =5280 (mm)
p, =100a, /(b-1) = 100(3096.8)/1652528=0.187 (%), =240 (N/mm?),
M[(OD)~h/(21,)=3000/13200 < 1 > =1.0
p, =100-a,/(b-x)=0.0067, a,=2DI13=253(mm?), x=150 (mm)
o, = 1.1(295) = 324.5 (N/mm?), o, = N/’ 4=1000000/1652528=0.605 (N/mm?)

0,,= 345837 (kN)
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e) Modification of initial stiffness of nonlinear springs

The same modification can be done for the nonlinear springs of wall element as described for those of
beam and column elements by reducing the initial stiffness of the nonlinear spring and increasing the

stiffness of the elastic element as shown in the following figure:

Moment distribution

M , M M
S0 —
My / My
2EI _
M, | ko = o + M,
’,ko k :ayk \kpzoo
0. 6, 0 r ¢ 4, ¢
Elastic element Nonlinear bending spring
Increase Reduce
stiffness stiffness
M M
III My —:?—O
+
MC
¢
Elastic element Nonlinear bending spring

Figure 3-3-12 Modification of moment — rotation relationship

180



Introducint the concept of “plastic zones”, the initial stiffness of the i-th multi-spring can be expressed as,
E A
P

where E; : the material young’s modulus, A4; : the spring governed area, and p. : the length of assumed

kg (3-3-29)

plastic zone. When p_ — 0, it represents the infinite stiffness for rigid condition.
In the same manner of beam and column elements, introducing the flexibility reduction factors,

Yo (< O), 7 (< 0), V5 (< O), the flexibility matrix of the elastic element is,

_ ; i ; -
/i 3EI,  6EI,
o
" 3Er
L
'3EI,  6EI,
Zl
— — 3-3-30
Lfi] v (3-3-30)
[ B A
/i 3EI,  6EI,
ll
sym.
V. V2 3EL,
e
I Yo EA, |
Also, adopting p, = — as discussed for beam and column elements, the reduction factors will be:
7 =7,=07, y,=038 (3-3-31)
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f) Reduction factor of shear stiffness

If shear cracking occurs in the reinforced concrete wall, the shear stiffness decreases. The following graph

shows the test results of the relationship between the stiffness reduction factor £ and the lateral drift

angle R x 107 (referred from “Standard for Structural Calculation of Reinforced Concrete Structure”,
Architectural Institute of Japan).

1.0
e
0.8
™~
0.6
0.4
0.3 h
kY
a\
0 DN
T |
0.1 %
0.1 0.2 0.3 0.4 0.6 1.0 3.0

— R(X107)
Ol'fa'B?'—l;"]ﬂ .'T'irdB:l,l(a
For example, if the lateral drift angle is over than 1/1000, the reduction factor becomes less than 0.2.

Therefore, STERA 3D assumes the “Reduction Factor for Stiffness” is 0.2 in the default setting for the

option of the RC wall element.

Wall Option Editor X

WALL OPTION

1. Amplification Factor for Steel Strength [0, 2] | 11

2. Reduction Factor for Stiffness [0, 1] | 0.2

3. Reduction Factor for Strength [0, 1] | 1
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3.3.1 Direct Wall

Direct Wall identifies the force-displacement points in the back-bone curves of the nonlinear shear spring

and the nonlinear bending spring.

<

Figure 3-3-13 Element model for wall

Different types of hysteresis model are prepared for the force-deformation relationship of the spring.

qi k ql k
Sy s s R — =
/ LAk fo L 1
L ko ui D/ ko ui
(a) Normal-trilinear (b) Degrading-trilinear

Figure 3-3-14 Hysteresis model of the shear and bending springs
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3.3.2 Steel Wall (Brace)

a) Buckling of brace

| w | %

Figure 3-3-15 Element model for brace

Under the compression load, the stress of buckling failure is calculated theoretically as

L )
where A= — : slenderness ratio
i

If o, >0, (strength of steel), the compression failure will occur before buckling.

g

0.6F

A

Figure 3-3-16 Relationship between buckling stress and slenderness ratio
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The AlJ (Architectural Institute of Japan) guideline adopts the following equation for the stress of buckling.

o, = {1—0.4(/1//1p )Z}O'y : for A<A, (3-3-32)

= ia for >4, (3-3-33)

")

*E

O.60'y

: Critical slenderness ratio

b) Hysteresis model

The hysteresis model proposed by Wakabayashi et. al. is adopted in STERA_3D (hereinafter referred to as
Wakabayashi model). The model consists of four Stages A, B, C and D.

30000 [N/mon’] 30000 [N/mm’]
250.00 Stage A 250.00 1
200.00 1 200.00 1
150.00 =60 ] 150.00 —1=60
100.00 100.00
50.00 / 50.00 / Stage D
0.00 x 0.00 x
-50.00 %\/ -50.00 %J
-100.00 g -100.00 4
-150.00 1 -150.00 1
-200.00 1 -200.00 1
-250.00 & 250.00 ¢
-0.004 -0.002 0.000 0.002 0.004 -0.004 -0.002 0.000 0.002 0.004
Stage A: tension failure with constant strength Stage D: unloading stage
30000 [(N/m’] 30000 [N/mon’]
250.00 1 250.00 1
200.00 1 200.00 1
150.00 =60 150.00 A=60 | Stage C
100.00 / 100.00 Stag i’D/
50.00 1 50.00 1
0.00 . / 0.00 . x
-50.00 é . -50.00 @%
-100.00 . -100.00 :
-150.00 StageB | -150.00 ]
-200.00 1 -200.00 1
-250.00 € 250.00 &
-0.004 -0.002 0.000 0.002 0.004 -0.004 -0.002 0.000 0.002 0.004
Stage B: buckling failure and strength reduction Stage C: tension stage after buckling
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The compression curve (Stage B) and the tension curve (Stage C) are defined using the nondimensional

strength and deformation as,
n = N/ N, : nondimensional strength

0 = A/ A,: nondimensional deformation

where N :axialload, N, = Ao : axial strength (A: area, o, :yielding stress of steel)

A displacement, A, =Le =Lo, / E : yield deformation

Both curves are assumed to be the following form

n= 1/(a5+b)r

where  a, b: parameters of the function of nondimensional Euler load n, =0, /0, = 1°E / (izoy)

b-1) Compression Curve

Compression curve (Stage B) is defined from the following empirical formula,

n= 1/([915+p2 )l/2

10/n, —1
3

Compression strength 72, is also on this curve, therefore,

, p,=4/n,+0.6

where  p,

n,= 1/(p15c +p, )1/2
or pn>S. + pn, —1=0

Since n :izszc =5
© N, E(A/L)4 A

Finally n_ is obtained by solving
P1”c3 +p,n,—1=0

b-2) Tension Curve

Tension curve (Stage C) is defined from the following empirical formula,

n= 1/(p35 +1)3/2

1

R AT
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d ] A g - ]
8P <5< 064, 6>0 [Stage B] .3_216_,6)0 [Stage A]
) n :ff(é'A-—-S): A ,//'
I 39 <5< sP [Stage D]
P

n +(6—0%) (np—nQ)/(aP-aQ):

e / 1o | 5
N L ' Seaa
-no I".I 0 Se.
. . B where
=S8 +ne—8)) | FeX)=(p X+ pn)172
1889, 6<0 [Stage C]| [1(X) =(p:X+1)730

b-3) Movement of Tension Curve
Movement of tension curve x is defined as follows:
x:ln(ql5a+l)—qzs J, § X

where qlz%, g, =0.115/n, +0.36

b-4) Movement of Compression Curve

Movement of compression curve y is defined to satisfy the following relationship

YV _96
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b-5) Movement of Compression Curve

The point shifting from the unloading Stage D to Stage C is obtained by assuming that the
plastic tension deformation o, is proportional to the plastic compression deformation o, as

é‘t = q350
_ S,
where ¢, =0.3/n, +0.24 1
‘\l
5.
Example
A =60
300.00 300.00
25000 250.00
200.00 200.00
150.00 150.00
100.00 10000
50.00 50.00
0.00
0.00
-50.00
-50.00
-100.00
-150.00 -100.00
200,00 -150.00
-250.00 -200.00
-0.004 -0.003 -0.002 -0.001 0.000 0.001 0.002 0.003 0.004 -0.004 -0.003 -0.002 -0.001 0.000 0.001 0.002 0.003 0.004
Starting from compression Starting from tension
A =120
300.00 300.00
250.00 250.00
200.00 200.00
150.00 150.00
100.00 100.00
50.00
50.00
0.00
0.00
-50.00
-50.00
-100.00
15000 -100.00
-0.004 -0.003 -0.002 -0.001 0.000 0.001 0.002 0.003 0.004 -0.004 -0.003 -0.002 -0.001 0.000 0.001 0.002 0.003 0.004
Starting from compression Starting from tension
References

M. Shibata, T. Nakayama and M. Wakabayashi, "Mathematical Expression of Hysteretic Behavior of
Braces", Research Report, Architectural Institute of Japan, No. 316, pp.18-24, 1982.6 (in Japanese)
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3.3.3 SRC Wall (Brace)

a) Section properties

T *@

| R

AS

1

1 1

Figure 3-3-17 Element model for SRC wall (RC wall with steel brace)

b) Nonlinear shear spring

Yield shear force

The yield shear force, Q , 1s calculated as,

Qy = Qy,RC + Qy,S

where

O, rc  : Yield shear force of reinforced concrete

0.053p,"% (o, +18) .
= L +0.85 .o +0.10, +b-
Qs e { M/(OD)+0.12 VP Ty 07/

0,5 : Yield shear force of steel

Qy’s = A, O, COSR

where,

A : Area of steel (mm?)

O, : Strength of steel (N/mm?)
R : Angle of steel
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3.4 External Spring

A B A
S —AMMB_ 5 X

5., A

Figure 3-4-1 Element model for external spring

3.4.1 Lift up spring

tension

K,

% % compression

ground

Figure 3-4-2 Hysteresis model of the external spring

In STERA 3D, if there is no building element at one end of the external spring, this end is considered fixed. Such
spring is used to express the stiffness the ground attached to the building. In such a case, as the relationship
between axial force and deformation of the spring, the linear stiffness is defined only in compression side and zero

stiffness in the tension side as shown in Figure 3-4-2, assuming that the building detaches from the ground.
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3.4.2 Air spring

Reference:

1) Marin Presthus, “Derivation of Air Spring Model Parameters for Train Simulation”, Master of Science
Programme, Department of Applied Physics and Mechanical Engineering, Luled University of Technology,
Sweden, 2002

vy

l)ﬂ tm

Aur bag
Vi py Ae

¢z,

Surge pipe
m A, L

Reservoir

Vi pr

Figure 3-4-3 Air spring (V' : volume, p : relative pressure, A : area)

An effective area A4, is introduced to express the volume change of air bag AV, as

AV, =Az (3-4-1)
When the initial pressure of air spring is p,, , after the deflection, the pressure will change as

Py =Dy +Ap,  forairbag (3-4-2a)

p, =p,+Ap,  forreservoir (3-4-2b)
The volume will also change as

V,=V,,—zA, +z A, for air bag (3-4-3a)

V.=V,—zA, for reservoir (3-4-3b)

where
z_ : the movement of air mass through orifice

A, : area of surge pipe

The pressure and the volume of the isentropic process can be described by
W =p-V (3-4-4)

where
p,, V,: initial pressure and volume

D>, V, : final pressure and volume

191



n : ratio of specific heat = 1.4 for Air

Applying the above equation to the air bag

(pO+Apb).(V;JO_ZAe+ZsAs)n :p0 Vbrz) (3-4-53)
(p0 +Ap, ) . (1 +Mj = Do (3-4-5b)
Vio

by using Taylor expansion (1 + x)n ~l+nx (xx)

(1+%N1+ n(=z4, ”SAs)J -1 (3-4-5¢)

Py 50

A —zA A
Assuming [ pr( 2 T2 S]z()
Po Vo

A n(zA, —z A,
Py (24.-2,4)) (3-4-5d)
Py Vio

Using the same procedure for the reservoir

(Po+4p,) (Vo —2,4,) = p, -V, (3-4-6a)

Ap, nz A

(3-4-6b)
Po Vo

From the Bernoulli equation, the difference of the pressure between the left and right of the pipe speeds up a
portion of gas through the orifice. The force balance in the pipe is given by

A (Ap,—Ap,)=Cz/ (3-4-7a)

where

[ : viscous damping parameter determined by experiment

Substituting Eq. (3-4-5d) and (3-4-6b),

A —z A A
pOASn[Z e L4 2 ] =Cz’ (3-4-7b)
Vio Vio
P, A, £z VoA, [i+l)4] =Cz/ (3-4-7¢)
Vio A, Vi Vi
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The force balance for the piston can be expressed as ¢ g

F; = Ae (pb ~ Pum ) (3-4'8) Patm

where

P o - atmospheric pressure

Air bag
Substituting Eq. (3-4-2a), Vi py Ae

F; :(pO+Apb _patm)Ae
=ApbAe+(p0 _patm)Ae
n(zA, —z A
=%p0Ae+(p0_patm)Ae

b0

n}?O‘Ae2 As
= 0% | oS 4 (py = P ) A (3-4-9)
Vi ( 4 ) (pe=pr)

From Eq. (3-4-7¢)

npy A4, Lz_ﬂ(no"'lfrojzs]zcz-ﬂ (3-4-10)

e

2
P, [z 4, ,j:icz.ﬂ (3-4-11)

2
F = Py A, ’1(12— js zs}r(po — Do ) 4y (3-4-12)

— npOAezﬂ" — nl)O‘Ae2 Q
Y T VetV Ve TV

S

A
\ Introducing a new variable y = y

z

s
e

A\ 4 A\ A4

N s s S

A s
Kv(z‘y)zié[ﬂj Cy'=C, 37, CﬁzlAe (A—ﬂ’] C, (3-4-13)

1 1
E=Kv(zz—yj+(po—pa,m)Ae=Kv(z—y)+1<v[;—1jz+(po—pmm)Ae (-4-14)

Therefore F,
K, (z=y)=C,-3’ (3-4-15) | o
KV
K
F. =K, (z=y)+K,z+(Py= Pum ) 4, (3-4-16) ‘ C, 1y
-
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Incremental form of equation is

F'z(nJr]) = Kv (Z(nH) - y(n+]) ) + KeZ(n+|)
Ziwery = Zmy T At-z (t,H] )

Vonsy = Yy TAL- y(tnﬂ)

Then

B
Yoy ™V | _
Cﬂ ( As ] =K, (Z(n+1) - y(n+l))

The solution of Eq. (3-4-18) is obtained by solving the following equation:

VA
f(y(n+1)) = C/i [%j -K, (Z(n+1) _y(n+l)) =0

Its derivative regarding V., is

-1
, BCs [ Yiuiry =V
f (y(n+l)): Af As +K,

A Newton-Raphson method is applied to solve the nonlinear equation f° (y(n ) ) =0

new _ old _ f(y(n+1))
Yins1) Yins1) I (J’(n+1) )

where the prime  f '( Vinsn) ) denotes derivative with respect to .y,

Fs m e e e e e - - -
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3.4.3 Base plate

=

Figure 3-4-4 Hysteresis model of the base plate

The relationship between the moment at the bottom of the steel column, M, and the rotation angle of the base plate,
R, is given as a rotational spring. The hysteresis model of the M-R relationship takes into account plastic

deformation due to anchor bolt pullout and tensile yielding.

3.4.4 Pendulum element

—mlO

mg

Figure 3-4-5 Pendulum element

From the equilibrium condition of the moment force
ml*0 + mglsind =0 (3-4-22)

Setting y = [0, sind~0
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mly+mglfd=0 > mly+mgy=0 > mjh{%)y:O > j}+(§)y=0 (3-4-23)

Therefore, the natural period of the pendulum element is

T=27r\/Z
g

It means that the pendulum element is equivalent to the element with the horizontal stiffness, &, = ne .
my+(Tg)y:0 > my+k,y=0, kh:Tg

Furthermore, the horizontal stiffness of the member with the initial tensile force, T, can be interpreted as & = 7 ,

even in the static condition.

y ﬂTsianTHz[zjy
—»\ !
[

T

Figure 3-4-5 Pendulum element

Therefore, the pendulum element can be interpreted as a line element with the axial stiffness, kv , and the

T
horizontal stiffness, k, = 7 ,where 7T is calculated by the gravity force.
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3.5 Base Isolation

The element model of base isolation consists of shear springs arranged in x-y plane changing its direction with
equal angle interval as shown in Figure 3-5-1. This model is called MSS (Multi-Shear Spring) model developed by
Wada et al.

X P—> X q;,u;
e —
y ] B.

H?L

Figure 3-5-1 Element model of base isolation

a) Nonlinear shear spring
The hysteresis model of each nonlinear shear spring is defined as a bi-linear model as shown in Figure 3-5-2. The

force and displacement vectors of i-th shear spring are expressed as,

{q”} {COSQ}
I g (3-5-1)
g, sin 6,
u‘(
ui:[cosﬁi sin@i]{ } (3-5-2)
u

y

From the relationship, ¢, = k,u,, the constitutive equation of i-th shear spring is,

: 2 u ) sind, ||u
dix _k, Cf)S 1 [cosH,. sing L= cos ,9’ cos.lesmH, . (3-5-3)
q:, sin @, u, cosd, sin 0, sin” 0, u,

q;

.
/[

Figure 3-5-2 Hysteresis model of the shear spring
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From the sum of all nonlinear shear springs in the element, the constitutive equation of the base isolation element

Q.| _ i K cosze cos'ﬁizsinﬁi u, G5
0, i1 | cosd;sind, sin” 6, u,

where, N is the number of shear springs in an element. In STERA 3D, N=6 is selected.

1S,

First and second stiffness

We assume that all nonlinear shear springs in an element have the same stiffness and strength. The initial stiffness

of the base isolation element, K, is obtained from Equation (3-5-4) by substituting u, =1, u, =0.

N
K, = (Z cos’ 0, ]ko (3-5-5)
i=1

Therefore, the initial stiffness of each shear spring is,

K
ky =——— (3-5-6)
> cos® 6,
i=1
The same relationship is established for the second stiffness after yielding,
K,
k (3-5-7)

y TN
Z cos’ 0,
i=l1
where, K , and ky are the second stiffness after yielding for the base isolation element and the nonlinear shear

spring, respectively.

Yield shear force
The yield shear force of the base isolation element, Qy , 1s obtained assuming that all the nonlinear shear springs
reach their yielding points except the spring perpendicular to the loading direction, and the increase of the force
after yielding is negligible (Figure 3-5-3). That is,
N
0, = [Z]cos 49,0 f, (3-5-8)

Therefore, the yield shear force of each shear spring is,
0,

L=
Z|cos t9i|
i=1

(3-5-9)
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I

/
/fy
o |:> 0 >/,
\f,
\ Y

s

Figure 3-5-3 Assumption of yield shear force
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Appendix 3.5:
A-1. Hysteresis of LRB (Lead Rubber Bearing)

LRB (Lead Rubber Bearing) is composed by rubber layers, steel plates and a lead plug core.

Lead Plug

Matural Rubber

-Reinforcing
. Steel Plate

- Cover
. Rubber

—

Flange

Figure A1-1. Lead Rubber Bearing (from Bridgestone Catalog)

1) Bi-Linear Model

The bi-linear hysteresis of LRB is defined as a combination of an elastic model and elasto-plastic model as shown
Figure A1-2.

ELASTIC PLASTIC ELASTO - PLASTIC
2 - - ’K
A \ A T J’ -
F
Q7 :
1 : Kl
QO B Kr R + : Kp _ = B } Keq R
Dy D, Dy
ﬁ ﬂ Qq
RUBBER LEAD \
Figure A1-2. Bi-linear model
The elastic stiffness, K, from the rubber is calculated as,
A
K =G 2 (Al-1)
H}"
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where G, is the shear modulus of the rubber, 4, is the cross section area of the rubber and H. is the total height of
the rubber.

The elastic stiffness, K, from the lead plug is calculated as,

K =G, 2~ (A1-2)

where G, is the shear modulus of lead, 4, is the cross section area of lead plug and H, is the total height of the plug.

The initial elastic stiffness, K;, and the secondary stiffness, K>, of the bi-linear model are then obtained as,
K, =K, +K »
K, =K,
The yielding deformation, Dy, is determined from the characteristics of the lead plug. The yielding force, Fy, is

(A1-3)

calculated as,

F, =K, +K,)D, (Al-4)

2) Modified Bi-linear Model

Hysteresis of a lead rubber bearing has a characteristic of stiffness degrading according to the strain level as shown

in Figure A1-3.

Force, F Skelton curve

Y

* Deformation, 6

Figure A1-3. Hysteresis of a lead rubber bearing

The secondary stiffness of a lead rubber bearing, Ky, is expressed as,
K,(r)=Cu Ik, +K,) (AL-5)

where y is a strain ratio (y =0/ H,) and C,, (}/) is a modification factor of the secondary stiffness, which

takes into consideration the strain dependency. Also, the intercept force is defined as,
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0,(r)=Cy (), 4, (A1-6)

where C 0d (}/) is a modification factor of the yielding shear force and o, is the yielding shear stress of lead.

The force is then expressed by:
F(y)=K,(r)6+0,(r) (A1-7)

-

Ku

Figure A1-4 Hysteresis loop model of lead rubber bearing

The modification factors, C,, (]/) and C,, (7/), are represented by the following formulas under 15 degrees

Celsius.
0.779y % | 7 <0.25
Co,(r)=1 7™ . 025<y<1.0 (A1-8)
y " 1.0<y<25
2.036y* y<0.1
Cpo(7)=41.106y""* | 0.1<y<0.5 (A1-9)
1 , 05<y
Cra (7/ ) Cou (7 ):
6 1.2
5 1
4 0.8
3 0.6
2 0.4
1 0.2
0 o Y
0 1 2 3 0 1 2 3

Figure A1-5. Modification factors
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Under a different temperature, ¢, the secondary stiffness and the yielding shear force are to be corrected by the

following formulas:

K,(t)=K,(t,)exp(-0.00271(¢ - ¢,)) (A1-10)
0,(t)=0,(t, )exp(-0.00879 (¢ — 1, )) (Al-11)

where  #)= 15 degree Celsius.

The primary stiffness of the lead rubber bearing, K, in Figure A1-4 is determined from the secondary stiffness, Ky,

as,

K,=pBK, (A1-12)

where 10< f<15.
Following the suggestion in the manual of CANNY (K. Li, 2004), the hysteresis rules are:

a) Elastic range
Under the strain level less than ve, the hysteresis is assumed to be linear with the secant stiffness at the strain, ye,
that is:
K,=F,ly, (A1-13)
F,=K,(7.)5.+0,(r.) 6.=7.H, (Al-14)
The value, y, =0.01 ,is adopted in STERA3D.
b) Loading on the skeleton curve after elastic range
Under the loading on the skeleton curve after elastic range, tangent stiffness is used to estimate the response at

the next step:

K=dF(y)/dy (A1-15)

Reference:

Response Control and Seismic Isolation of Buildings, Edited by Masahiko Higashino and Shin Okamoto, SPON
PRESS, October 17, 2006.

Canny Technical Manual, Kangning Li, August 2004
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2) Consideration of strength reduction by dissipated energy

Reference

1) Masanori liba, et.al., “Research on Characteristics of Isolators and Dampers under Multi-cyclic Earthquake Motions
and Effects on Response of Seismically Isolated Buildings”, Building Research Institute, National Research and
Development Agency, Building Research Data, No. 170, April 2016 (in Japanese).

2) Haruyuki Kitamura and Miyuki Omiya, “Design method for long period ground motion - Points to note when
dealing with long-period ground motion”, The Kenchiku Gijyutsu, No. 815, pp.116-125, 2017.12 (in Japanese)

From Reference 1), the yield shear stress of lead plug, 7, is expressed as
r=r0{1—(T/TL)“T}, a; =0.4+0.25(T/T,) (A1-16)

Where,
7, : Design value of the yield shear stress of lead plug = 15.0 (N/mm?)

T : Average temperature of lead plug
T} : Melting point of lead plug = 327.5 (°C)
For example, when T =20 (°C), 7 is calculated to be 10.3 (N/mm?).

Reference 2) suggested another formula as

0,'(r)=n0,(7) (A1-17)

1w,
1=—-0.06+125exp| ——— (A1-18)
360 V,,

where

0, ( }/) : Intercept force without reduction

A : Reduction factor

W, Dissipated energy

V/d

V= Zprzhpb : Volume of lead plug
h,, =nt, + (n — l)l‘s : Height of lead plug

n : number of rubber layer, ¢ : thickness of rubber layer, £ : thickness of steel plate

Also, the following formula is sometimes used

8.33 1 W,
U=—— —0.06+1.25€xp[—f D, | ——*£ ] (A1-19)
7.97 ( ””)360 Vs

where

f (pr ) =0.1 6pr0'31 : Correction value by the diameter of the lead plug, D, (mm)
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STERA_3D adopts Equation (A1-19). The reduction factor x4 is plotted as a function of energy dissipation as

follows.
14
12
=1
W 1
ad
W 08
E 0.6
15'; 04
02
0
W,/ Vi, (N/mm?)
Figure A1-6. Strength reduction factor by energy dissipation
Example)
Bridgestone Product: LH060G4 C
Diameter (mm) 600
Lead plug diameter (mm) 100
Effective area (x10*mm?) 2749
Thickness of one rubber layer (mm) 4
Number of rubber layers 50
Total rubber thickness (mm) 200
Total height (mm) 407.9
Shear modulus of rubber Gr (N/mm?) 0.385
Apparent shear modulus of lead ap (N/mm?) 0.583
Yield shear stress of lead sy (N/mm?) 7.967
(shear properties at shear strain = 100%)
Initial stiffness K1 (x10°kN/m) 7.18 (=13xK2)
Post yield stiffness K2 (x10°kN/m) 0.552"D
Characteristic strength Qd (kN) 62.6"1
*1)
Shear stiffness of laminated rubber Kr = Gr Ar / H (x103kN/m) 0.529
Additional shear stiffness by lead plug : Kp = ap Ap /H (x10°kN/m) 0.023
Total stiffness K2 = Kr+Kp (x103kN/m) 0.552
Yield strength of lead Qd = sy Ap (kN) 62.573
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(a) Bi-linear

(b) Modified bi-linear

Figure A1-7. Comparison of hysteresis loops
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A-2. Hysteresis of HDRB (High Damping Rubber Bearing)

HDRB (High Damping Rubber Bearing) is composed by rubber layers and steel plates. By adding special

ingredient in the natural rubber, rubber itself demonstrates damping characteristics.

High Damping Rubber

-Reinforcing
Steel Plate

. Cover
. Rubber

‘\\ Flange
Figure A2-1. High Damping Rubber Bearing (from Bridgestone Catalog)

1) Modified Bi-linear Model

The hysteresis of HRB is defined as a modified bilinear model as shown Figure A2-2.

T Y

yd

Figure A2-2. Bi-linear model
The initial stiffness, K, from the rubber is calculated as,

K1(7):G1(7/)XA/Hr

u(}/)—ﬂxheq(;/)/ZJru(;/)x T X heq(}/)/2
u(y)=mxh,(r)/2

G ()= xG,,(7) (A2-1)
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where

y :shear strain (y =6/ H )

A, : cross section area of the rubber

H, : total height of the rubber.

G, (}/) : Equivalent shear modulus

Geq(j/):a0+a17+a2y2+a37/3+---+any” (A2-2)
h, ” (}/) : Equivalent damping factor
h(y)=Bo+ By +Boy’ + By + o+ By (A2-3)
u(}/) : Intercept force
u(y)= s+ oy + py* + gy oo,y (A2-4)
Example)
Diameter: ¢1500
Thickness of rubber: 7.5mm x 20 layers =150mm
S, =49.7
S, =10.0
Nominal compression stress: 10N / mm”*
Strain ¥ Coefficient of each order
0 Ist 2nd 3rd 4th
G (7,) 0.1~1.5 1.1503 -2.5382 3.3047 -2.0356 0.4728
eq
(N/mmz) 1.5~25 3.7412 -6.8745 5.1256 -1.6946 0.2092
2.5~3.0 0.1749 0.0261 0.0071
h,(7) 0.1~1.5 0.135 0.0903 -0.13 0.1067 -0.032
1.5~2.5 -0.6239 1.5853 -1.1493 0.3627 -0.0427
2.5~3.0 -0.05016 0.1762 -0.0376
u(y) 0.1~1.5 0.2989
1.5~3.0 0.3685 -0.0464
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Hysteresis of a high damping rubber bearing has a characteristic of stiffness degrading according to the strain level

as shown in Figure A2-3.

Force, F Skelton curve

< > Deformation, §

Figure A2-3. Hysteresis of a high damping rubber bearing

The secondary stiffness of a lead rubber bearing, K, is expressed as,

K,(y)=G,(y)x4/H, (A2-5)

Gy(y)=(1-u)xG,,(») (A2-6)

The shear force is defined as,
P, (r)=K,(r)x X, (A2-7)
K,(r)=G,(r)x4/H, (A2-8)
where X - the maximum deformation

Also intercept force is defined as,

P,(y)=uly)x P, (y) (A2:9)
The hysteresis rules are:

a) Elastic range

Under the strain level less than ¥ = 0.01, the hysteresis is assumed to be linear with the secant stiffness at the

strain, that is:
K,=K,(y=0.01) (A2-10)

b) Loading on the skeleton curve after elastic range
Under the loading on the skeleton curve after elastic range, tangent stiffness is used to estimate the response at

the next step:

K=d0(y)/dy (A2-11)
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2) Consideration of strength reduction by dissipated energy

Reference

3) Takuya Nishimura et al., “Practical Response Evaluation Method for Seismic Isolation System against Long Period
Earthquake Motions - Part2- High-Damping Rubber Bearing and Lead Damper”, AIJ Annual Convention,
Architectural Institute of Japan, 2013, pp.767-768 (in Japanese)

In the above reference, the reduction factors of equivalent stiffness and equivalent damping are proposed as,

C, =—0.0073-(E/V)+1.0 (E/V <10.0N/mm?)

A2-12
C, =-0.0025-(E/V)+0.952 (E/V>10.0N/mm?) (A1

C, =—0.0039-(E/V)+1.0 (E/V <10.0N/mm?)

A2-13
C, =-0.0016-(E/V)+0.977 (E/V>10.0N/mm?) (A1

where  E: dissipated energy, V: volume of rubber

Reduction factor
[ ]
m}
=

026 :
0 3 w15 20 35 W

EfV (N/mm? )

To consider the strength reduction by energy dissipation, STERA 3D modifies the equivalent shear modulus and

the equivalent damping factor as,

G, (7)=CG,, (7 =0.01) (A2-14)

h,(7)=C,h,(y=0.01) (A2-15)
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A-3. Hysteresis of Lead Damper

Reference

1) Takuya Nishimura et al., “Experimental Study on Multi-cyclic Characteristics of Devices for Seismic Isolation
against Long Period Earthquake Motions: Part 7- Lead Damper”, AIJ Annual Convention, Architectural Institute of
Japan, 2011, pp.667-668 (in Japanese)

2) Takuya Nishimura et al., “Study on Multi-cyclic Modeling of Devices and Response Evaluation for Seismic
Isolation against Long Period Earthquake Motions: Part 5-Modeling of Lead Damper and Seismic Response
Analyses”, AIJ Annual Convention, Architectural Institute of Japan, 2012.9, pp.383-384 (in Japanese)

/7 Cast Lead

Steel Flange Plate

@

0 2000 4000 6000 8000 10000

Strength reduction factor R

Dissipated energy £ (kNm)
Figure A3-2. Relationship between dissipated energy and strength reduction factor

In the above references, from the cyclic loading test of a lead damper with the different horizontal displacement

amplitudes, three line graphs are obtained for the relationship between the dissipated hysteresis energy and the

horizontal strength reduction ratio. The breaking points of the line are proposed as follows to match the test results.
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a) The first point of strength reduction, (R1 , E,| )
R, =1.0
E, =-37+2322d| (0.1<]d|<0.4), 195 (d[<0.1)892 (d[>0.4) (kNm)

(A3-1)

b) The second point of strength reduction, (R2 , E, )

R, =0.62+0.60d| (0.1<|d|<0.4), 0.680 ((|<0.1),0.860 ([>0.4)
E,=2205 (kKNm) (A3-2)
¢) The third point of strength reduction, (R3 , B, )

R, =0375+0.525d| (0.1<|d|<0.4), 0.428 (|a[<0.1),0.585 (a[>0.4)
E, =8000 (KNm) (A3-3)

d) The fourth point of strength reduction, (R » E 4)

R,=0

E, =9683-2060[d| (0.15<|d|<0.4), 9854 (¢<0.15) 8859 (¢[>0.4) (kNm)  (A3-4)
The hysteresis of the lead damper is defined as a bilinear model. To consider the strength reduction by energy

dissipation, STERA_3D adopts the line of d = 0.2 (m) for random amplitude. The strength of a lead damper, O, ,
is then expressed as,

0, =R 0, (A3-5)
where, R : Strength reduction factor

Q, : Initial strength of a lead damper

Force, F

Skelton curve

Deformation, ¢
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A-4. Hysteresis of Elastic Sliding Bearing

Reference

1) Shigeo Minewaki et al., “Study on Multi-cyclic Modeling of Devices and Response Evaluation for Seismic Isolation
against Long Period Earthquake Motions : Part 2-Modeling of Low Friction Bearing and Viscous Damper”, AlJ
Annual Convention, Architectural Institute of Japan, 2012, pp.377-378 (in Japanese)

Laminated rubber Flange plate

Base plate

Sliding material
Sliding plate Connective steel plate

Figure A4-1. Elastic Sliding Bearing

In the above reference, the dynamic friction coefficient changes according to the temperature of the sliding plate as,
ty ==7.5x107-T +0.0145 (A4-1)

The change of the friction coefficient is expressed as a function of the increment of temperature as
A =0.03-(AT +1)"" -0.03 (A4-2)

On the other hand, the increment of temperature has the following relationship with the dissipated energy

E ,(kKNmm),

AT =0.00019- E,*’ (A4-3)
Therefore, the dynamic friction coefficient is obtained from the dissipated energy,

p=u,(T)+Aul(E,) (A4-4)

The hysteresis of the elastic sliding bearing is defined as a bilinear model. In STERA 3D, the initial friction
coefficient is temporary assumed as £, = 0.029 from the catalog of a manufacture. The strength reduction by
energy dissipation will be expressed as,

0, = (,Uo + A/U(Ed )) (Qdo / ) (A4-5)

where, (,,: Initial strength of an elastic sliding bearing
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A-5. Hysteresis of Bouc-Wen Model

B=0.5, y=0.5 8=0.1, y=0.9

Reference

1) Terje Haukaas and Armen Der Kiureghian, “Finite Element Reliability and Sensitivity Methods for
Performance-Based Earthquake Engineering”, PEER 2003/14, APRIL 2004

2) Wen, Y.-K. (1976) “Method for random vibration of hysteretic systems." Journal of Engineering
Mechanics Division, 102(EM2), 249-263.

3) Baber, T. T. and Noori, M. N. (1985). “Random vibration of degrading, pinching systems." Journal
of Engineering Mechanics, 111(8), 1010-1026.

a) Basic formulation

The basic formula of Bouc-Wen model is

f=ak, x+(1-a)k, z (A5-1)

A=l s il

z (A5-2)
n

where, [,y ,and Nare parameters that control the shape of the hysteresis loop, while A, v, and 7

are variables that control the material degradation.

From the yield deformation, 5y, the parameters [, y are expressed as,
B=PB,/5) and  y=y,/0) (A5-3)

The model can be written as,

e A—|z|N{ﬂsgn(5cz)+ ]/}Vx :a_zﬁ

% o1 (A5-4)
n X
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This leads to the following expression for the continuum tangent
0z

A— N .
k=Y ok +(-a)ky E=aky +(1-a)k, A psenlic) 7ty
ox ox n

(A5-5)

The evolution of material degradation is governed by the following choice of equations (Baber and
Noori 1985):

A=A4,-0, v=1+d.e n=1+0,e (A5-6)
where eis defined by the rate equation

e=(-a)k, zx (A5-7)

and 4,,0,,0,,and 0, are user-defined parameters.

b) Incremental form for numerical analysis

Incremental form of Eq.(A5-1) is
Sy = kg Xy + (1 - a)ko Z (41 (A5-8)

By a backward Euler solution,

Zuy = Zm T At Z.(tn+l)

: (A5-9)
Xipiny = X T At x(tm)
Applied to Eq. (A5-4),
N X, - X
(n+1) (n)
A(n+1) _‘Z(m) Bsgn Zy | TV 1 Vi
At Xy ™ Xy
Zinaty = Zy T A (A5-10)
T ns) At
where
Ay = Ay =0 4800175 Vi) =1H0,€00005 Ny =140, (A5-11)
X, =X
e =e +A(l-a)k, z  —D T
(n+1) = €y ( ) 0 Z(n+1) Az (A5-12)
=€, T (1 - a) k, Z(n1) (‘x(n+l) - x(n))
Since
X, =X
) ~ X
sgn(T Z(M)J = sgn{(x(nﬂ) - X0 )z(,m)} (A5-13)
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( ) +
f (11+]) (n 1) (11)
(” 1)

N
O=4,,, ~ ‘Z(nﬂ) YV

Y= ,Bsgn{(x(m) X )Z(n+1> }+ ’

(x<n+1) - x(n)): 0

(A5-14)

(A5-15)

(A5-16)

A Newton-Raphson method is applied to solve the nonlinear equation f’ (Z(n o ) =0,

new old f(Z(”’H) )

z =z -
(n+) = Z(n+1) ,( )
S Z(n+1)

where the prime f '(Z(n +1)) denotes derivative with

respect to z,,,

(A5-17)

A

Evaluation of the function derivatives is summarized below.

Original f (z(nm)

Function derivatives f '(Z(n +1))

Xty ~ Xy

€ty = €y T Al -a) k, Z(n+1) Al

X - X
€ (ny = At(l - 0() ko e
At

A(n+1) =4, - 5Ae(n+1)

_ |
(n+l) = -J,e (n+1)

Vi) = 1+ 5ve(n+l)

Ny = 1+ §ne(n+1)

N-1
N " 1 _
D=4, _‘Z(n+l) ¥V D=4, N‘Z(MH) Sgnqz(nﬂ) )\P V(ns1y
N 1
- ‘Z(m) v
O ( ) o', —0n'
_ _ - _ _ (n+1) (n+1)
f (Z(n+1>)— ) T Em) Xty ™ Xy S '(Z(n+1>)—1— 3 (x<n+1> —x(n))
(n+1) n (n+1)

(A5-18)
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The procedure can now be summarized as follows:

(ni1) = Z(ney| > tO1)

1. While (\z"ew old

(a) Evaluate function

€nsty =€y T (1 -a ) ko 2y (x(nm - x(n))
A(n+1) =4, - §Ae(n+]) s Vs = 1+ 5ve(n+1)’ Ny = 1+ 57]e(n+l)
Y= ,BSgn{(x(nu) X )Z(n+l) }"‘ Ve

N
LP V(n+1)

O = A(n+l) - ‘Z(nﬂ)

i(x(»m) - 'x(n)) (A5-19)

(n+1)

f(Z(n+1)): Zily " Zm) —

(b) Evaluate function derivatives

X — X

' _ (n+1) (n)
€ ) = At(l — a) k, —At
A‘(n-%—l) = _§Aev(n+1)
V' = 0,€' )
77'(11+I) - é‘r]e'(nﬂ)
q)'_ A' —N v ( )L]J _ N\P 1

= A (4 Zen|  SBMZ iy T Vi) ~ 204 Va1
D'ty —PH'

' _ (n+1) (n+1) i

f (Z(n+l))_ 1- (x(n+l) - x(n)) (A5-20)

772(n+1)

(c) Obtain trial value in the Newton-Raphson scheme

f(Z< +1))
' =z - . (A5-21)
(n+1) = Z(n+1) .( )
" " f Z(n+1)

(d) Update z,,,,

old new
Zinal) = Z(ne1) and Zipal) = Z(ne1) (A5-22)
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c) Tangent stiffness
The tangent stiffness is necessary to compute the nonlinear structural analysis.

From the incremental forms:

f(n+1) =ak, Xiney T (l_a)ko Z(n41)

N Xy ~ Xy
Fsgn At Zy | TV 1 Vi
Xty =X

ne1 At

A

(ntl) ‘Z(n+l)

Zity = Zmy t+ At

The tangent stiffness is calculated as (T. Haukaas and A. D. Kiureghian, 2004);

0 0z
ko2 Jon g +(1-a) by —" (A5-23)
) T 0 0 or
(n+1) (n+1)
oz, b
& 4 (A5-24)
ax(nJrl) by

where

Y= ﬂsgn{(x(nm X )Z(n+1> }Jr Y

N
LP V(n+1)

O = A(n+l) - ‘Z(nﬂ)

b, (1 - a) k, Z (a1
b, = (1 - Ot) ky (x(n+l) - x(n))

(x(n+1) - x(n))

Nnsny

b, =

N D ()
Vo,b — (‘x(n+1) X )5171)1 +

2
(n+1) (n+1)

N-1
Sgn(z(n+1) )‘{J Vi

N ()
Vo,b, + 2 (x(rH—l) - x(n))5nb2

(n+1)

b, =—b;6,b, — b3‘Z(n+1)

by =1+b,6,b, +b,N|z,.,

+b, ‘Z(n+1)
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A-6. Hysteresis of FPB (Friction Pendulum Bearing)

1) TPB (Triple Friction Pendulum Bearing)

R.. PA‘\Rs- “:_\
— ds |t —

— \ —1

. | X
>

L Siide Plates

Reference

1) Daniel M. Fenz, Michael C. Constantinou, “Spherical sliding isolation bearings with adaptive
behavior: Theory”, Earthquake Engineering and Structural Dynamics, 2—8: 37: 163-183

Effective radius of each surface

Ry =R-h, Ry;=R-h, Ry =R—-h, R, =R —h,
Friction force of each surface

Fy=mW, Fpy=ml, Fpy=wW, Fpy=p W

Stiffness after sliding of each surface
w w w w
K, =— Kﬂ:—, Kf}:—, Kf4=—
' R ' ' R

el eff2 Rf?[f'3 eff 4

where,

R, : the radius of curvature of the i-th sliding surface,

h; : the radial distance between the i-th sliding surface and the pivot point of the articulated slider
d,: the displacement capacity to the displacement restrainer on the i-th sliding surface,

M. : the coefficient of friction of the i-th sliding surface,

W : the vertical load.
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Restoring force of each surface is the bilinear model with the capacity deformation.

Horizontal Force

Displacement on Surface i,u;

FBDI.

FBD II.

FBD Il

FBD IV.
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In small incremental deformation du, (i =1,---,4), if the instantaneous stiffness of each spring K; is used,

K, K, K, K},
BVAVAVAVANSIVAVAVAVANIPNIVAVAVAVANPNIVAVAVAYA N
du, du, du, du,

The total incremental deformation du of the TPB is the sum of the deformation of each spring

4
du=> " du, = du, +du, +du, +du, = dF

1 1 1 1

* * * *

Kf2 Kf3 Kf4

i=1 Kf]

Therefore, the deformation of each spring u; is obtained from the total deformation u as

dF =K'du, K =

. 1

1 1 1 1
K., K K K

The conditions of parameters are:

1)

2)

3)

4)

5)

Effective radii of inner surfaces 2 and 3 are smaller than those of outer surfaces 1 and 4

R

g = R

>R . =R

eff4 /¥ 3

Inner surfaces 2 and 3 slide before outer surfaces 1 and 4

Hy = s <y < Hy

For the outer surface 1 to slip before the inner capacity deformation d, is reached, i.e., the force on face 1 is
less than the force on face 2 at the capacity deformation, then
w w
Fpy<——d,+F,, > pW<—d,+pmW > d2>(:ul_:u2)Refj‘2
eff 2 eff 2

For the outer surface 4 to slip before the inner capacity deformation d, is reached, i.e., the force on face 4 is

less than the force on face 3 at the capacity deformation, then

w
Ff’4 <_d3+Ff3 > d >(;u4_lu3)R

eff'3
eff'3
For face 4, which has the greatest frictional force, to slip before the capacity deformation of face 1 is reached
w
Fp, < di+F, > d1>(ﬂ4_ﬂl)R¢ff1
Reﬂ 1
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2) Single Friction Pendulum Bearing

Property Editor

x

FPB ( Friction Pendulum Bearing) Hysteresis Model

@ Single . |
¢~ Double Jlﬁ'-&yl_ Tht
" Triple Rl,y’;
—Parameters of each sliding surface
Surface 1 Surface 23 Surface 4
u - friction coefficient | 0 | 0 I 0
R :radius (mm) IG |0 I 0
| h : height (mm) |0 |0 l 0
d - disp. capacity (mm) IG |0 I 0

OK |

3) Double Friction Pendulum Bearing

Property Editor

FPB ( Friction Pendulum Bearing) Hysteresis Model

R4, p4
" Single i
¢« Double }@E l:‘:
" Triple RL, i1
~Parameters of each sliding surface
Surface 1 Surface 2,3 Surface 4
u : friction coefficient [0 | 0 | 0
R :radius (mm) IG ID |D
' | h:height (mm) |0 |0 Io
d : disp. capacity (mm) IU IO IO
OK |

222

In case of a single sliding surface,
force-deformation of FPB is
dF =K'du, K =K
In case of double sliding surfaces,

force-deformation of FPB is

dF =K du, K*=;
1 1

+
K, K

the

the



Example)

Property Editor X

FPB ( Friction Pendulum Bearing) Hysteresis Model

R4, p4 R3, p3 _d3_
¢ Single AN
- d4 UThs [he
" Double LAy Lz{hl
i
. ¢ R
& Triple RLpl R2, 2 g7

Parameters of each sliding surface

Surface 1 Surface 2,3 Surface 4

u : friction coefficient [0.08 | 0.02 ’ 0.08
R :radius (mm) ]3962 |45? ,3962
h : height (mm) [114 |33 [114
d : disp. capacity (mm) ‘514 |51 [514

OK |

W =415.12kN

Note) In STERA, the frictional bearing capacity is calculated from the initial vertical load and the coefficient of

friction. Note that the frictional capacity remains the same even if the axial force varies.

F (kN)

200

180

160

140

120

100

80

60

40

20

u (cm)
0 20 40 60 80 100 120 140

223



u
A 2= 0
B Ff1 u = (M _:u2)Refj"2 +(,U1 _:u3)Reff3
C P}4 l;*:lQ(Rwd+£%ﬁ)+(ﬂ1_ﬁﬁ)Rwa_lﬁRwl_lﬁRms
W " R,
D F,, :R_d' +F, Ugy =U +d, [“ﬂJ_(M _lul)(Reﬁ"I +Re.ff'4)
effl eff'1
w d d
E Fdr4:R d4+Ff4 ”dr4_”dr1+K : +ﬂ4]{R_l+ﬂ1]:|(Reff2+Reﬁ”4)
eff 4 eff 4 eff'1
F (kN)
300
200

u (cm)

-150 150

-200

-300
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3.6 Masonry Wall

Figure 3-6-1 Element model for masonry wall

a) Nonlinear shear spring

Hysteresis model of the nonlinear shear spring is defined as the poly-linear slip model as shown in Figure

3-6-2.

©Q

ok

QS
o
(=]
=

S

Ye 7, V. y

Figure 3-6-2 Hysteresis model of the nonlinear shear spring

The characteristic values, O.,0,, 0, are obtained based on the formulation described in the reference

(Paulay and Priestley, 1992).
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The procedure to obtain the shear strength is shown below:

(1) Compression strength of masonry prism

/

Z/R /t
‘_B-’

Compression strength of diagonal strut is

R=7Ztf", (3-6-1)
where,

s : Compression strength of the masonry prism

Z : Width of the diagonal strut (Z = 0.25 d, d is diagonal length)

t : Thickness of wall

The compression strength of the masonry prism ( /", ) is determined by the following equation (Paulay and

Priestley, 1992),

Sl e
US4 )
where,
S : Compressive strength of the brick
' : Tensile strength of the brick (= 0.1 /')
S : Compressive strength of the mortar
J : Mortar joint thickness
h, : Height of masonry unit
U, : Stress non-uniformity coefficient (=1.5)

Another formula is proposed by Eurocode 6:
b

=k () () (3-6-4)

where, k,a,f : constants provided by the table in Eurocode 6

The shear strength is then obtained as,
V.=Rcos@=Ztf' cosb (3-6-5)
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(2) Shear strength by sliding shear failure

R cosB

Tl :
R G
R sinB ﬁ o
Ty
=2 cohesion /

angle of internal friction

The maximum shear stress is obtained from the Mohr-Coulomb criterion:

T, =7,+ U0, =7, ttango, (3-6-6)

where,
7, : Cohesive capacity of the mortar beds (=0.04 /", ) (Paulay and Priestly, 1992)
Y7, : Sliding friction coefficient along the bed joint

#=0.654+0.000515/", (Chen etal, 2003, f' (kg/cm®))

o, : Compression stress (=W /A, = Rsin@/ A,))

The shear strength is

V=14, = (z‘o + ,uAKjAW =1,A4, +uW (3-6-7)

w

Substituting V', = Rcos@, W =Rsin@

where @ is an angle subtended by diagonal strut to horizontal plane

Rcos@=1,4, + uRsin@

RcosO(1— ptan@)=1,4, (3-6-8)
A
- utané
Therefore,
A
.= _Todw (3-6-9)
1-putan@
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(3) Characteristic values of nonlinear skeleton

The shear resistance, O, is calculated to be the minimum value between the shear strength by sliding

y b
shear failure, V', and the shear strength of diagonal compression failure, V, that is,

Q, =min(V,,V,) (3-6-10)

The shear displacement at the maximum resistance, ¥ o is obtained as (Madan et al.,1997),

!

3-6-11
T os 6 ( )
where,
g, Compression strain at the maximum compression stress
(&',,=0.0018, Hossein and Kabeyasawa, 2004)
Initial elastic stiffness is assumed as (Madan et al., 1997)
ky=20,17, (3-6-12)
From Figure 3-6-2, the shear resistance at crack, (., is obtained as,
 —ak
QC = u (3 _6_ 1 3)
-«
where, « is the stiffness ratio of the second stiffness and assumed to be 0.2.
Shear displacement at crack is then obtained as,
Ve =0 kg (3-6-14)

Shear resistance and displacement at the ultimate stage are assumed as (Hossein & Kabeyasawa, 2004)
0, =030, (3-6-15)
7. =3.5(0.014,, —7,) (3-6-16)

where, £, is the height of masonry wall.

References:

1) T. Pauley, M.J.N. Priestley, 1992, Seismic Design of Reinforced Concrete and Masonry building, JOHN
WILEY & SONS, INC.

2) Hossein Mostafaei, Toshimi Kabeyasawa, 2004, Effect of Infill Walls on the Seismic Response of
Reinforced Concrete Buildings Subjected to the 2003 Bam Earthquake Strong Motion : A Case Study of
Bam Telephone Centre, Bulletin Earthquake Research Institute, The university of Tokyo

3) A. Madan,A.M. Reinhorn, ,J. B. Mandar, R.E. Valles, 1997, Modeling of Masonry Infill Panels for
Structural Analysis, Journal of Structural Division, ASCE, Vol.114, No.8, pp.1827-1849
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(4) Modification factors

STERA_3D provides modification factors for stiffness and shear strength in the option menu.

The stiffness modification factor, A, changes the stiffness while maintaining the shear strength in the

skeletal curve.

Q Q

©
©

ok T QC 7 o (l \>\ ________
/ o/ |/
k, Ak,

7/0 7/}7 7/” ]/ 7/5 }/y }/u 7/

S

S

The strength modification factor, 77, changes the strength while maintaining the stiffness in the skeletal

curve.

=

S

k, 0, | &,

ok, 10, \
_______ n Qc OC}CO

S

b) Vertical springs

For the moment, the vertical springs of the element model in Figure 3-6-1 are assumed to be elastic springs.

N'. =k, N.,=ke', (3-6-17)
k,=E,(,)/2 (3-6-18)
where,
E, : Modulus of elasticity of masonry prism (=550 f",,, FEMA 356, 2000)
t : Thickness of masonry wall
» Width of masonry wall
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3.7 Passive Damper

a) Hysteresis damper

Hysteresis damper is modeled as a shear spring as shown in Figure 3-7-1.

Bl B B2

Figure 3-7-1 Element model for passive damper

Different types of hysteresis model are prepared for the force-deformation relationship of the spring.

(1) Bi-linear Model

(2) Normal-trilinear Model

f=hth / />
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(3) Degrading Tri-linear model

P
nem pe ky i
1 / ks '
: ,/ 170.\' pam
: k ky/'ua’ }Zﬂ = M=
| Py
: M
__________ an k =km//,l ? m . “
(ngm pe‘)
(4) Bouc-Wen model
Y y
aE aﬁ ﬁ
(f=05,7=05 N=10) (B=057=05N=2) (B=0.1,7=09,N=2)

(5) Nonlinear Spring model

Figure 3-7-2 Hysteresis model of the shear spring
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b) Viscous damper

Viscous damper is modeled as a shear spring as shown in Figure 3-7-3.

Figure 3-7-3 Element model for passive damper

(1) Algorithm for oil damper devise

Figure 3-7-4 shows the Maxwell model with an elastic spring with stiffness, K,, and a dashpot with

damping coefficient, C.

Ky C —

o I o Fij, uij
Node i Node |
Fk, uk Fe, uc
Figure 3-7-4 Maxwell model
Since the elastic spring and the dashpot are connected in a series,
F,=F.=F, (3-7-1)
where, F, :force of the elastic spring

F : force of the dashpot

F;j : force between i-j nodes
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The force of the elastic spring, £, is obtained as,
By =Ky =Ky (uy —u,) (3-7-2)
where, u,, : relative displacement of the elastic spring
u, : relative displacement of the dashpot

u; : relative displacement between i-j nodes

For an oil damper, the force-velocity relationship of the dashpot is defined as shown in Figure 3-7-5.

Fe

-~

relief point

Qc |[---""

G e
Figure 3-7-5 Dashpot element
The force of the dashpot after the relief point is,
F,=Cu, +0, (3-7-3)
Substituting Equations (3-7-2) and (3-7-3) into (3-7-1)
K (u; —u,)=Cyu.+0, (3-7-4)
When the time interval At is small enough, the velocity at time t can be expressed as,
. Au (1
u,(t)= ;() (3-7-5)
At
Auc (t) =u. ([) —U, (t - At) (3'7'6)
Substituting above equations into Equation (3-7-4),
K\, (t)—u, (t—Ar))-
Au, (1) = ol ”()C (= 40)-0. (3-7-7)
2 +K,
At

The algorithm to obtain the force F;(#) from u;(¢) is as follows:
1) Evaluate Au,(¢) from Equation (3-7-7)
2) Evaluate u,(¢) from Equation (3-7-6)
3) Evaluate Fj(¢) from Equation (3-7-2)
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Before the relief point of the dashpot, Equation (3-7-7) will be obtained by changing C, = C,, Q.=0

as

K gy (1) —u,(t - Av))
C

1
—+K
At

Au, (1) =

(3-7-8)

When the velocity of the dashpot is over the negative relief point, Equation (3-7-7) will be obtained by
changing Q. - -0.,
Koy () —u,(t - AD))+ O,

Au_ () = (3-7-9)
G,
—+K,
At
In case there is no elastic spring,
cC —
Fij, uj
O I O ijy Uij
Node i ]
Fc, U
Figure 3-7-6 Dashpot element without elastic spring
(1) =u, (1)
Fuj :Fc :C2uc+Qc
. Au (t Aui. t
uc (f) — c( ) — j( )
At At
Therefore,
Au (t)
F.()=C, \ +0, (3-7-10)
Before the relief point of the dashpot,
Au (1)
F,(t)=C,— (3-7-11)
i () =G, Ar
When the velocity of the dashpot is over the negative relief point,
Au, (0)
Fij (H=C, AZ‘ -0, (3-7-12)
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(2) Algorithm for viscous damper devise

Figure 3-7-7 shows the Maxwell model with an elastic spring with stiffness, K,, and a dashpot with

damping coefficient, C.

Ka C —
F..’ Uii
O I o ij, Uij
Node i Node j
Fk, Uk Fe, u.
Figure 3-7-7 Maxwell model
Since the elastic spring and the dashpot are connected in a series,
F,=F =F; (3-7-13)
where, F, : force of the elastic spring
F, : force of the dashpot
F;j : force between i-j nodes
The force of the elastic spring, £, is obtained as,
(3-7-14)

Fo=K,u, :Kd(uij —u,)

where, u, : relative displacement of the elastic spring
u, : relative displacement of the dashpot

u; : relative displacement between i-j nodes

For a viscous damper, the force-velocity relationship of the dashpot is defined as shown in Figure 3-7-8,

a:
Fo 01 0

Figure 3-7-8 Dashpot element

That is,
‘ (3-7-15)

4, (1)

F, =Csgn(u, (1))
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From Equations (3-7-13) and (3-7-14)
Fy (1)
K

d

+u (t)=u,; (1) (3-7-16)
Taking time differential and substituting Equation (3-7-15) give

F;é;m + sgn( (t){‘ N )‘] =, (?) (3-7-17)

d

The numerical integration method, Runge-Kutta Method, can be used to solve the Equation (3-7-17).

In general, the solution of the differential equation, y(¢)= f(y,?), is obtained by Runge-Kuttta Method as

follows:
1
Y1 =V +g(ko + 2k + 2k, + ky) (3-7-18)

ko =1 (y,.t,)At

ky=f(y, +ky/2,t, +At/2)At
ky=f(y, +k /2,t,+At/2)At
ky=f(y, +ky,t, +At)At

Equation (3-7-17) can be written as

. ;@)
Fy () =| i, (6) - sen(F, (:){‘ / ‘ K, (3-7-19)
Applying Runge-Kutta Method gives the following algorithm,
Fy(t,) = Fy(t,) +— (k (1,) + 2k, (2,)) + 2k5 (2,) + k5 (2,)) (3-7-20)
1a

‘E’j tn

ko =| 1, (1,) —sen(F, (z,) - K, At
\ () +ky /2\

Ky =| iy (1, + At12) —sgn(F, (1,) + ko /2 -

C

(t,)+k /2
ky =| i (1, + At12) = sgn(F, (1) + k, 12 V) k12 ‘ K At

e
|y (1,) + k|
ks =| 1, (1, + Ay —sgn(F (2,) + k, T K
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In this algorithm, it is assumed as,
ulj @)+ u,j (t, +Ar)
2

i, (1, +At/2) =

In case there is no elastic spring,

Node i

Fc, Uc

Figure 3-7-9 Dashpot element without elastic spring

(1) = u, (1)

a

F,=F,=Csgn(i, (1))

4, (1)

Au, (1) _ Au (1)

u.(1) = At At
Therefore,
A, ()| A, ()]
F. :C iy A
u (1) Sgn( At j| A |
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Fij, uij

(3-7-22)

(3-7-23)

(3-7-24)

(3-7-25)



(3) Algorithm for visco-elastic damper devise

Figure 3-7-10 shows the Voigt (or Kelvin-Voigt) model with an elastic spring with stiffness, K, and a

dashpot with damping coefficient, C. The stiffness of the connection is represented as K, .

K
Ka C —
F..’ Uii
O I o ij, Uij
Node i Node |
Fk, Uk Fe, u.
Figure 3-7-10 Voigt (or Kelvin-Voigt) model
Since the elastic spring and the dashpot are connected in a series,
F,=F =F; (3-7-26)
where, F, : force of the connection spring
F : force of the dashpot and spring
F;j : force between i-j nodes
The force of the connection spring, £, is obtained as,
Fo=Ku, =K, (u; —u,) (3-7-27)
where, u, : relative displacement of the connection spring
u, : relative displacement of the dashpot and spring
u; : relative displacement between i-j nodes
The force of the dashpot and spring is,
F. =Ku, +Cu, (3-7-28)
Substituting Equations (3-7-27) and (3-7-28) into (3-7-26)
(3-7-29)

Kd(ul.j —u,)=Ku, +Cu,
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When the time interval At is small enough, the velocity at time t can be expressed as,

i, (0) = —A”Zt(t)

Auc (t) =u. ([) —u. (t - At)

Substituting above equations into Equation (3-7-29),
K, (1) —(K, + K )u,(1—Ar)

Au, (1) =

C
E+(Kd+K)

The algorithm to obtain the force F;(#) from u,(¢) is as follows:
1) Evaluate Au,(¢) from Equation (3-7-32)
2) Evaluate u,(¢) from Equation (3-7-30)
3) Evaluate Fj(¢) from Equation (3-7-27)

In case there is no elastic spring,

—\N\—

Node i Node j

Fc, U

Figure 3-7-11 Voigt model without connection spring
u, (6) = u, (1
F;j =F =Ku_ +Cu,

AMC (f) _ Aug,' (t)

u (t)=
0 At At

Therefore,

Aui]’ (t)
Fy(6) = Kuy (0 + C—L=
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(3-7-31)

(3-7-32)

Fij, uj

(3-7-33)



3.8 Ground Spring

3.8.1 Soil structure interaction

a) When building and foundation on ground are subjected to an earthquake excitation, the system can be
divided into two parts: b-1) building and foundation with interaction forces and b-2) ground with zero-mass
foundation subjected to the reaction of interaction forces and an earthquake excitation, which can be
divided further into c-1) zero-mass foundation subjected to an earthquake excitation (kinematic
interaction) and c-2) zero-mass foundation subjected to the reaction of interaction forces (inertia

interaction).

b-1) Building and foundation

a) Building and foundation [

o

b

‘—
% \/\ c-1) Kinematic interaction

Input ground motion

b-2) Ground with zero-mass foundation

2

y -
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In case of c-2), the force-displacement relationship is written as,

F; B Ug
i ) o

where P, M, are sway and rocking forces corresponding to the interaction forces between the

Ky K
K K

R

HS

superstructure (building-foundation) and the ground, u,, 0, are sway and rocking displacements. This

stiffness matrix is called “dynamic impedance matrix”.

If we neglect the coupling between sway and rocking degrees of freedom, the dynamic impedance matrix is

evaluated separately from the d-1) sway impedance K, and d-2) rocking impedance K, as follows:

F; B Ug
i wle) o2

K, 0
0 K,

Mg, 0;

d-2) Rocking

SN\,

G

——

_
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This corresponds to the Sway-Rocking model as shown below:

¢-2) Inertia interaction ¢-2) Sway-Rocking model

MG’QG

s
Fs,ug

-

Finally, the soil-structure interaction is

implemented adding the sway and rocking

H
H
Bl e springs at the bottom of superstructure.
H
HE N
H

Input ground motion

It is important to note that the input ground motion to an embedded foundation is smaller than the input
ground motion in the free field due to the influence of the embedding of the foundation. This effect is called

“kinematic interaction”.

Free filed Embedded foundation

-

.
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3.8.2 Cone model to calculate the static stiffness

The cone model is proposed by Wolf [1994] for determining the dynamic stiffness of a foundation on the
ground. The foundation is assumed as an equivalent rigid cylinder and only vertically incident shear wave
is considered. In case of the stratified ground, a simplified formulation is proposed by Ilba et.al. [2000]
without considering the reflection and refraction coefficients at the boundary of the soil layer to obtain the

static stiffness. The following formulation is adopted in the STERA 3D software.

Reference:

1) John P Wolf, Foundation Vibration Analysis Using Simple Physical Models, Prentice Hall, 1994

2) liba M., Miura K and Koyamada K, "Simplified Method for Static Soil Stiffness of Surface Foundation",
Proceedings of AlJ Annual Meeting, 303-304, AlJ, 2000. (in Japanese)

a) Sway spring
Consider a semi-infinite cone whose area increases in the depth direction. First, we show the calculation
method of the horizontal ground spring (sway spring) for the rectangular foundation 2bXx2c¢ (ground

surface foundation or embedded foundation). The equivalent radius of a circle having the same area is

fb
obtained as 7, =2 oe )
T

Q+@ fo

F.

BN
2 l]i
FL
e

The forces of the minute portion at the distance z from the apex of the cone are:

* Shear force at the upper surface
0
0=rr’Gy = sza—“ (3-8-3)
4

+ Shear force at the lower surface

2 ) 5
Q+d—QdZ:7r 1+% r Gé u+a—udz =7 1+% G 6—u+a—?dz
dz z Oz 0z z 0z Oz

(3-8-4)

Considering the static case ignoring the inertial force acting on the minute part, from the balancing of

forces,
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> (Q+d—dej—Q:0
dz
2 2
> E(1+%j rzG[a—u+a—b2ldzJ—7rr2Ga—u:0
z z Oz 74

2 2 2 2 2
> (1+%j 6—qua—b;a’z —a—u=a—zldz+ 2£+(£J 6—qua—L;a’z =0
z 0z 0Oz 0z Oz z z 0z Oz

=>» Ignoring high-order small amount terms

o'u 200 _

— 0 3-8-5
0z° z oz ( )

The solution to this equation can be expressed as follows:
A
u=—+2~ (3-8-6)
z

where A and B as undetermined coefficients.

Assuming that the displacement on the ground surface is U and the displacement at the depth d is 0 as

boundary conditions,

A A
U=—+B, 0=—+B (3-8-7)
[ d
From this, the coefficient A is
(l +d )l
A=""Tp@ (3-8-8)
d
Let (J, be the shear force of the ground surface
ou A [+d
2 2 2
=narG—=xar,G|—— |=—| 71, G—— U (3-8-9)
G =m G, O(Fj (0 ld]
Therefore, the horizontal spring K, on the ground surface is
O, , I+d
K, =—==7m1rG—— (3-8-10)
“u "' Wl
Assuming that d is infinite,
2
nr, G
K, = ‘; (3-8-11)

The horizontal spring of the circular rigid foundation on semi-infinite uniform ground is obtained
theoretically from the following formula.
_ 3G,
2y

If the two springs are set to be equal, the distance [ from the apex of the cone to the ground surface is

Ky

(3-8-12)

obtained as follows:
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2
9
8Gr, _7i5G ,_ (2-v) - ey
2-v [ 8
) 2ry - _ If
I — @ [_/:3 .
G, % 14
G2’ Vz :: dz .
. } /2 2 Zy.1
Gy 24/ G N\la
X [ |
X / ) 2}*}.- . Zi
X v
G”‘I_’vﬂ'l L 4 dﬂ-l
GH) Vn :: dﬂ

In case of the stratified ground, consider a truncated cone of thickness d, from the i-th layer of stratified
ground and z;, be the coordinate of the bottom of the i-th layer. The radius of the truncated cone 7; at

depth z, is then calculated as follows from the geometric relationship.

Z.
2 :—’ro (3-8-14)
20

The horizontal spring on the upper surface of this truncated cone is

2 2
Ko=m?Giatd g2, g & GG ) 27, (3-8-15)
d Z Zi (Zi - Zi—l) Z G, )z, (Zi —Zi

i1

The horizontal spring K,, at the base bottom position is obtained as a synthetic spring in which

horizontal springs of each layer are connected in series.

n—1
1 L (3-8-16)
Khb i=0 KH

However, in the bottom layer,

2 2
K = 7, G, [ﬂj (ZnZn—l o G, [i}@ (Zn N oo) (3-8-17)
2o

Z G, z, _Zn—l) Z G, ) z,

Finally, the horizontal ground spring K, is obtained as,

K,, = B,K,, (3-8-18)
where s 5
1 nr, G, wry G, 8mrG,
S 1 Z, [ (2 —V)
-1\ &;
Q, :[EJ ZiZi (i=1,2, ,n—l), a, —(G”jz” L
G )z, (Zi - Zi—l) G, ) z,
2-v,
Z, = 2 R
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b) Rocking spring

Rotational spring can be obtained as follows, similar to the method for determining horizontal spring. For
the rectangular foundation 2bx2¢ (ground surface foundation or embedded foundation, 2b is the
length in rotational direction), the equivalent radius of a circle having the same moment of inertia is

e (2e)

obtained as 7, =

kY2

o . T 4

") The moment of inertia of a circle I = Z o
o (26’ (2¢)

The moment of inertia of a rectangular [, = T
N /
,/2}/'0\\ _."’ \\\
ri Y

:’; y ‘x\
______2_:__ ,-";r fl—r——:‘h
=/ \
£ Y
,.f'f \‘;)M + aaﬂ dz "1'\.
z

The forces of the minute portion at the distance z from the apex of the cone are:

* Moment at the upper surface

4
m=—pr20 g7 90
oz 4 Oz

+ Moment at the lower surface

e (RS (D
z z

(3-8-19)

dz Oz Oz 0z 0z°

(3-8-20)
Considering the static case ignoring the inertial force acting on the minute part, from the balancing of

forces,

> (M#—dﬂdzJ—M:O

dz
x(, dzY 00 %0 rt ou
> -S| 1l+— | rE| —+—dz |+ E—=0
4 z 0z Oz 4 0Oz
=>» Ignoring high-order small amount terms
2
%Jrﬂ@:o (3-8-21)
0z~ z Oz

The solution to this equation can be expressed as follows:
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0 = i} +B (3-8-22)
z

where A and B as undetermined coefficients.

Assuming that the rotational displacement on the ground surface is ® and the displacement at the depth d

is 0 as boundary conditions,

®:£+B, O:L+B (3-8-23)

3

l; (1 +d)
From this, the coefficient A is

(L+d) 1}
A=—"1"-06 (3-8-24)
(L+d) -1}

Let M|, be the shear force of the ground surface

y y y 3(1 +d)
M, =T g _ o p _¥ 7oy 3(h+d) (3-8-25)
4 oz 4 ) 4 {(z +d) —13}1
Therefore, the rotational spring K, on the ground surface is
M y 3(1. +d)
K,=—t="lnp ¢ 3 ) (3-8-26)
© 4 {(1, +d) —13}1,
Assuming that d is infinite,
_ 3y (3-8-27)
o4

The horizontal spring of the circular rigid foundation on semi-infinite uniform ground is obtained
theoretically from the following formula.
8Gr
K, = r0 (3-8-28)
3 (1 - V)
If the two springs are set to be equal, the distance / from the apex of the cone to the ground surface is
obtained as follows:

9(1-v*)

3 4 4
8Gr, _3aryE _3mn,E 2G(14v) > 1 =, (3-8-29)

3(1-v) 4l

I3
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Gy 14,
i de! t /o, N\ .
¥ /* > i-1
TGy 4 7 ey N4
r / ) 2 "N\ |
Y L J
Gﬂ"_’vﬂ'l ::dn-l
GV, 14,

In case of the stratified ground, consider a truncated cone of thickness d, from the i-th layer of stratified
ground and z,; be the coordinate of the bottom of the i-th layer. The radius of the truncated cone 7, at

depth z,. is then calculated as follows from the geometric relationship.

po= iy, (3-8-30)

ri r0
ZrO

The rotational spring on the upper surface of this truncated cone is

4 3 4 3.3
K =i g 3(2”._1 +di) _ 3z E | B ZiZyi1
R 4 i 303 4z 3 (.3 .3
(Zrifl +di) T Zyin1  Zrin r0 Zro\ % T Zrin

E,
The rotational spring K, at the base bottom position is obtained as a synthetic spring in which rotational

(3-8-31)

springs of each layer are connected in series.

1 n—1 1
— =y (3-8-32)
Krb i=0 KR

However, in the bottom layer,

3t E (E 3 22 3nryE (E, |z
Kgfl — 7[1/;0 1 [ n J Z3 Z;-ann—l - % _n @ (Zn —> w) (3-8-33)
0

4Zr0 El r (Zjn - Zjn—l ) 4Zr0 El ZjO
Finally, the horizontal ground spring K, is obtained as,
K, =pK, (3-8-34)
Z 2z, . . 5
1 _3mnyE, _ 37n K, _ 4 ok,

= K, =

4z, 41 31-v/
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3.8.3 Embedded foundation

Ky, Ky

K, K

he? “*re

In case of embedded spread foundation, the resistances at the side of the foundationK,,, K, can be

expected in addition to the resistances K,,, K, at the base of the foundation. That is,

K,=K,,+K,
Kr = Krb + Kre
where
D G
Khe = é:heKhh ¢ —he
i G
D pY|lG
Krezme,,b 23— +0.58( ej —he.
Feo Ko b
G H.
G _; b G _(2_V)Khb
he m ’ hb — 8
H g

(3-8-35)

(3-8-36)

(3-8-37)

(3-8-38)

D, is the depth of the foundation. &,, and &, are the earth pressure reduction coefficients of

horizontal and rotational directions at the side of the foundation and they are set to 0.5 when considering

only the side receiving the reaction force from ground at the time of the earthquake. m is the number of

soil layers from the surface to the bottom at the side the foundation where the earth pressure acts. v is the

average Poisson's ratio of the ground under the foundation base. The damping at the embedded part is not

considered.
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3.8.4 Radiation damping

The static stiffness obtained by the cone model alone can not express the radiation damping that the
energy of ground shaking spreads to a distance.

To evaluate the radiation damping, we consider a semi-infinite earth column with the same area of the
foundation where a shear wave travels downward when the foundation sways harmonically in a horizontal
direction.

The wave travels in the earth column can be expressed as the solution of the wave equation.

Cu_y20u |G (3-8-39)

s

or oz D
where G is the shear modulus of the soil, p is the density of the soil, and V, is the shear wave
velocity.
When the foundation sways harmonically as ue” , the solution of the wave equation is

t=z/Vy)

u(z,t)=ue" (3-8-40)
The shear force at the bottom of the foundation is,
ou GA » GA du du
=—GA—| _, =—iupe” =——=(pV. A)— 3-8-41
Q 82 z=0 I/S p VS dt (p s ) dt ( )

where A is the area of the foundation. Therefore, the damping force by the radiation is equivalent as the
viscous damping of a dashpot with a damping coefficient

C,=pV.A (3-8-42)

The radiation damping of a rocking motion is expressed as the similar formula
Cp=p (V)1 (3-8-43)

4
r

where I = T is the second moment of inertia for a circular foundation with the radius r

n =——— is the coefficient for vertical wave velocity, where v is the Poisson’s ratio
z(1-v)
P eipt . P eipt
‘_’ uelpt
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In case of the stratified ground, we can use the following formula for the radiation damping

Cy=pY.A (3-8-44)

34
Co=p.(nV.)I. ﬂe=m

where p, is the average density, V, is the average shear wave velocity and v, is the average shear

(3-8-45)

modulus defined by the weighted average by depth of layers under the basement as

Zn:pidi Zn:Vidi ividi
— i=1 — i=1 , Ve — i=}1
2.4, 2.4, 2.4,
i=1 i=1 i=1

, vV

e

p. (3-8-46)

3.8.5 Complex stiffness with material damping

The damping effect of the soil material can be considered by setting the shear modulus to the following

complex shear modulus.
G =G(1+2ih) (3-8-47)

where / is the damping factor of the soil. As a result, the dynamic stiffness obtained from the cone model

becomes also complex value as,
KH*ZKH+iKH'=KH(1+2ihH) : sway spring
KR* =K, +iK,'=K, (1 +2ih, ) : rocking spring (3-8-48)

Furthermore, the damping coefficient is obtained from the imaginary part of the complex stiffness under the

periodic vibration of the circular frequency o.
K-x+C-% - assuming x =ae” > (K—i—ia)C)x
From the equivalent condition,
(K+ioC)x=(K+iK")x =K (1+2ih)x

K' 2hK
Therefore, C=—=—-— (3-8-49)
w w

STERA 3D calculates the circular frequency ® as
2z
I

where 7, is the first natural period of the structure with the ground spring (real part).

(3-8-50)

@,
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3.8.6 Impedance matrix

It is known that radiation damping is likely to occur in a frequency band higher than the dominant
frequency of the ground ( f;;), and the effect is greater at higher frequencies. Therefore, the damping is

evaluated separately for a lower frequency side and a higher frequency side than the dominant frequency.

a) Incaseof f < f, (a) < a)G) for Sway spring and f <2 f, (a) < 2a)G) for Rocking spring

Considering material damping only,

P, =K, u,+Cpug, C:£:2}Z—K (3-8-51)
@ @
M, =K, 6,+C,0, (3-8-52)
where
K,,C, : stiffness and damping of sway spring
K;, Cp : stiffness and damping of rocking spring

b) Incaseof f > f. (a) > a)G) for Sway spring and f >2 £ (a) > 20)G) for Rocking spring

Considering both material damping and radiation damping,

P, =K, u;+(C, +Cy )i (3-8-53)

M=K, 0;+(Co+Cp")0, (3-8-54)
where

c, . C' : radiation damping for sway and rocking

To avoid the discontinuous of damping, we modify the formula as

F, =K, uG+(CH +¢,Cy ')aG’ Sy :%

: -2
Mg =Ky 0, +(Co+$:Ci)0;, &= f—ffG (3-8-56)

(3-8-55)

In a matrix form

A R 4 & O 1 S
M, |0 K,|6, 0 Co+8:C' |6,
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3.8.7 Pile foundation

Now we discuss the Sway and Rocking springs for the foundation with piles.

=

Z
a) Vertical stiffness of a single pile
The vertical stiffness of a single pile is obtained from the follow formula:
ky(1+e7*" )+ Eda(1-e7 " k
K, = EAa o “) ( “), o= (3-8-58)
kB(l—e’“ )+EAa(1+e’“ ) EA

where,

E : Young’s Modulus of the pile, A : Area of the pile, L : Length of the pile
kg : Vertical spring of the soil surrounding the pile, k,: Vertical spring at the bottom of the pile
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v

- - u

T

b

kSuZdZT

a-1) Equilibrium condition of the vertical forces in a pile

dz

The equilibrium condition of the vertical forces in a small segment is

dP =k dz=0
The axial strain in the segment is obtained as
du, _ P
dz  EA
Therefore
2
fl—f = EA ‘;ZZZ = k.

The solution of this second order differential equation is

_ k
u =ce” +c,e”, a=,-=*
EA

Also

P =FEAa (cze"” —cle’”)

(3-8-59)

(3-8-60)

(3-8-61)

(3-8-62)

(3-8-63)

Setting the boundary conditionsas P =F, at z=0 and u_=u, at z=1L,

F, :EAoc(c2 —cl)

_ al —alL
u, =ce”” +ce

Therefore, the coefficients ¢, and c¢, are obtained as
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EAau, — Pe™* . - Edau, + Pe*
EAx (e“L +e ) , > Eda (e“L +e )

¢ =

The force at the bottom of the pile p, is
P =FEAa (cze’“L —ce™ )

From the relationship u, = P, /k,, ,

. 2K,B,
'K, (e‘“ + e’”‘L)+ EAa(e”‘L —e )
and
u, = 25

K, (e“L +e ) + Eda (e“L —e )
The displacement at the head of the pile is

u, :C1+C2

Therefore, the stiffness of the vertical spring at the head of the pile is

B, _Eda(c,—c) _ Eda(Pe™ +PRe™ ")

K= u, ¢ +c,  2EAau, —Pe "+ Pe™*
EAa(e +e* )
) 2 al _ -al
2hde ky (e"’L + e_“L)+ EAa(e”L —e‘”’L) " (e ¢ )
EAO!( ){ (e“L +e ) +EAa (e"L —e )}
4EAO£+(€ aL){ (eaL+e—aL)+EAa(eaL_e—aL)}
 Eda (e“i+e “j)+EAa( "“L)
B(e“ “ )+EAa( )
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(3-8-68)

(3-8-69)

(3-8-68)
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a-2) Vertical spring of the soil surrounding the pile
The vertical spring of the soil surrounding the pile k; is obtained as the friction resistance of soil

surrounding the soil (Randolph and Wroth, 1978).

—— [
2 -~"’\“'”“i 4
- T + i gl'ln'
§ g 3¢
' § . _-\\' TH+—-dr
. ar
1 o
|4 Gy
k\_\\\
"“--..._,._.,..-.-'

(a) Concentric cylinder around loaded pile ~ (b) Stresses in soil element

Reference: Randolph M.F and Wroth C.P, “Analysis and deformation of vertically loaded piles”, Journal of
Geotechnical Engineering 104(12): 1465-1487. 1978.

From the equilibrium condition of vertical forces

0
(T+8—Tj(r+dr)d0dy—rrd0dy+(ay + ;y dyj(r+%jd9dr—0'y (r+%)d9dr =0

or
(3-8-70)
Neglecting higher order
o(rr oo
( )+r Y~ (3-8-71)
or oy
Assuming the stress change along the depth ﬁay / Oy is negligible, the second term will be zero. Then,
O(Tr)
—==0 (3-8-72)
or
Integrating from the pile radius 7, to r,
jrd(rr) =0 = r(r)r—r(ro)ro =0
T\, ) I, 7.7
’Z’(}’):@:M (3-8-73)

r r
Assuming the deformation along the radius du is smaller than the deformation along the depth dw , the
shear stain is
_Ou Ow dw o(r) 7,

=t a = =00 _ 3-8-74
4 82+8r dr G(r) rG(r) ( )

256



The vertical shear deformation is obtained by integrating from 7, to 7, ,

Ldr:%ln(rl} (5875)

o rG 7

T
”

Wg :To’"oj

Randolf and Worth proposed the following empirical formula for the radius 7,
r,=2.5L(1-v) (3-8-76)

The vertical force around the pile is calculated as

2rG
P=(27xr)t, = T Wy (3-8-77)
In(r,/r,)
Therefore, the vertical spring of the soil surrounding the pile kg is
27xG
ky=—"——~ , r,=25L(1-v,) (3-8-78)

ln(rm/ro)

where,

G, = %i (Gl.dl. ) : average shear modulus, v, = %i (Vidi ) : average Poisson ratio
i1

i=1

a-3) Vertical spring at the bottom of the pile
The vertical spring at the bottom of the pile k, is obtained as a static impedance of circular

foundation as,

3r 7Gyh

oo =2 _T"B0
8 (1-vy)

(3-8-79)

where,
G : shear modulus of the soil at the bottom of the pile

Vv, : Poisson ratio of the soil at the bottom of the pile
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b) Horizontal stiffness of a single pile

b-1) Horizontal stiffness of a single pile

The flexural deformation of the infinite pile under horizontal load at the top of the pile is

4

Efiy+p(ﬂ=0

4
X

where p (x) is the reaction force of the soil.
Assuming
p (x) =k,By

where B is the width of the pile.

The solution is expressed as

y=e”"(4,sin Bx+ B, cos Bx)+e ™ (C,sin fx + D, cos fBx)

k,B

=4
p 4E1

Since the deformation in infinite depth is zero, thatis x —>o0, y=0,

A =B =0

In case of fixed pile head,

d
9«»:25 ——BC,+pD, =0 >

x=0

The horizontal force at the pile head is

H = —Q(O)
Therefore,
0 3
Q( ):_d); _Clﬂ3:_£
El d 0 EI
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C=1p
BEI

(3-8-80)

(3-8-81)

(3-8-82)

(3-8-83)

(3-8-84)

(3-8-85)

(3-8-86)



The horizontal deformation of the pile is

H
—Bx [
= e sin px +cos Opx 3-8-87
V=R (sin B Bx) (3-8-87)
The deformation of the pile head is
H
= 3-8-88
Y (-5:88)

Therefore, the horizontal stiffness is

K,=4p5°El =(4E1)" (k,B)"" (3-8-89)

Francis (1964) proposed the following formula for the horizontal ground spring per unit length of a

single pile:
13E, (EB*) "
ki =hkB=—"—% —— (3-8-90)
I-v"\ EL D,
where

E,: Young’s modulus of a pile, 7,: Moment of inertia of a pile

E : Young’s modulus of soil, v,: Poisson ratio of soil

This formula is based on the study by Biot (1937) with respect to the ground spring against bending of
an infinite beam on ground and is modified by Visic (1961). Francis extended this concept to the pile

considered that there is ground on both sides of the beam and doubled the ground stiffness.

Reference:

1) Francis A. J, Analysis of Pile Groups with Flexural Resistance, Journal of the Soil Mechanics and
Foundations Division, 1964, Vol. 90, Issue 3, Pg. 1-32

2) Biot, M. A. Bending of an infinite beam on an elastic foundation. J. Appl. Mech., 1937, 4, 1, AI-A7

3) Vesic A.B, Bending of beams resting on isotropic elastic solid, Journal of the Engineering Mechanics

Division, 1961, Vol. 87, Issue 2, Pg. 35-54
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b-2) Horizontal damping of a single pile

Gazetas proposed the following formula for the horizontal damping per unit length of a single pile:

Cos =2psB(V, +V5) (3-8-91)
S|wave

where 4
3.4V |
V, =———=—: Lysmer analog wave I

Vg (1 —V ) -

This damping expresses the radiation damping *--- 3 =} ---» Pwave

in both directions of the pile. Pille
|

v

Reference: Gazetas, G. and Dobry, R, Horizontal Response of Piles in Layered Soils, J. Geo tech. Engrg.
Div.,ASCE, Vol.110, pp.20-40, 1984

b-3) Ground spring and damping coefficient between multiple layers
The ground spring and damping coefficient between multiple layers can be calculated by multiplying

the layer thickness of each layer and averaging as

k 'fSi = O'S(ka(i—

wHi + kg H, ,») (3-8-92)

¢’y =0.5 (cgs H  + chl.Hl.) (3-8-93)

(i-1)
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¢) Impedance of group piles
In case of group piles, the impedance of the foundation can not be obtained from the simple addition

of the impedances of individual piles because of the interaction of piles.

A\

c-1) Group effect in horizontal direction (stiffness)
The horizontal stiffness of group piles is obtained from the horizontal stiffness of a single pile as,
Ky = NpByKys (3-8-94)
where
K ,,; : horizontal stiffness of group piles, K, : horizontal stiffness of a single pile
N, : number of piles, /[, : coefficient of group effect

The following formula is adopted for STERA 3D as the coefficient of group effect for horizontal (x)

direction,
B, = 0.4(5,/3)0.3 (NX/2)—<).74(s/13)")"‘3 (Ny/2)—0,59(8/3)’“54 (3-8.95)
where
S : distance between piles in x-direction, B : diameter of pile,
N, N, :number of piles in x-direction and y-direction
The horizontal stiffness of a single pile is obtained from Eq. (3-8-89) as
K =(4E,1,)" k" (3-8-96)
where
];S : the stiffness coefficient of a single pile under homogenous ground
The horizontal stiffness of group piles
Ko = NpByKys = No By (4E,1,) " ki = (4N,E, 1) k2 (3-8-97)
ke =Ny, " kg (3-8-98)

261



For the horizontal damping, the group effect is assumed negligible, and the horizontal damping of

group piles is obtained as,

where

e = Nocps (3-8-99)

¢y - damping coefficient of group piles, ¢, : damping coefficient of a single pile

In evaluating the horizontal ground stiffness of the group pile K. in layered ground, it is necessary

to determine the value of the stiffness coefficient l;G which represents the average stiffness coefficient in

layered ground. The following iterative procedure is used to calculate k; .

P

Y
Y

Set the initial value of /;G as

k; =average of k, inthe surface layer (< 5B)

where k; =N, ﬂHmkSi : horizontal stiffness of group pile at i-th layer from Eq.(3-8-89)

The flexural deformation of a pile under the horizontal load P at the top is approximated by

P gy [k,
U=———e s px+cos bx), =4 3-8-100
AN, E, 1, [ (sin 5 px). B AEI ( )

The horizontal stiffness at the top can be calculated by,

ZkGiui
K, = = (3-8-101)
0

Update k; as

1/4

ko =(Kpgs)" /(4N,E, 1) (3-8-102)

Go back to Step 1 until K., = K.
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c-2) Group effect in horizontal direction (damping)

The damping effect of the soil material is considered as
kg =k, (1+2ihg, ) (3-8-103)

where A, is the damping factor of the soil in i-th layer. The horizontal damping at the top of group piles

can be calculated by,

Z heu,
B, =000 (3-8-104)

Uy

Therefore, the imaginary part of the horizontal stiffness is

K"~ 2hu6K g

In the same way, the horizontal radiation damping at the top of group piles can be calculated by

C-.U.

Cho = Z—G (3-8-105)
U,

where ¢ =N Csi

c-3) Group effect in rocking direction (stiffness)
The group effect in rotational direction is assumed negligible and the coefficient of group effect is
one. Therefore, the rotational stiffness is calculated from the vertical stiffness of individual pile as
Kic, = Zm:KViyiz : around x-axis (3-8-106)
Kpe, = f:[( Vl.)cl.2 : around x-axis (3-8-107)

i=1

where

X;, y; :distance from the center of ration in x, y directions

c-4) Group effect in rocking direction (damping)
In case of rocking direction, the damping effect of the soil at the bottom of the pile is considered
dominant.
My = hy (3-8-108)
where A, : damping factor of the soil at the bottom of the pile

Therefore, the imaginary part of the rocking stiffness is

Ky ' = 2hpo K g (3-8-109)
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3.8.8 Equivalent period and damping factor considering soil structure interaction

a) Equivalent period

58
—

F ) m

K;, C,

Force and deformation

5,=F/K,
5=5,=F/K,

Stiffness

K=K,

Period (mass of foundation is ig

m

T,=2r

L

K. C,

S

5S:F/KS
§=6,+0,=F(1/K,+1/Ky)

1
K, +1/K,

nored)

T, =27 | =
KS
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S, =HO,=H(M/K,)
= H(FH/K,)=F/(K,/H)

0=0,+06;+0,

= F(/K, +1/K, +1/(K, /H?))

1
= 1K, +1/Kg+1/(K, /H?)

mH?*

T,=2n

R

2
T=zﬁ\/i=zﬁ m,m  mH
K K, K, K,

=T} +T; +T;



b) Equivalent damping

b-1) Equivalent damping for material damping
Force including damping force is
F=C5+K$

For a harmonic excitation J = ae'”

S=iwd
Then
. C .
F =K(l+la)Ej§=K(l+2h1)5

where / is the damping ratio

wC
h=—
2K
Defining the viscous damping ratio separately for each dashpot,
oG, oG, oGy
) S ) ) ¢

This is the case to define the damping force to be independent to the frequency of excitation.

This type of damping is called “material damping”.

Total complex stiffness will be

1 1 1

K(1+2hi) Ky (1+2h,0) ' K (1+2hi) " Ky H? (1+2h,i)

Using the relationship
1 1-2hi 1-2hi .

v2hi (le2n)(—2h) 1ean
Then

i(l —2hi) = L(l —2h,i) +i(1 —2hsi)+;(1 —2h,i)

K K, K K, /H?
From the real part

1 1 1 1

— =t —t—
K K, K, K,/H
From the imaginary part

2 2 2
h:£h3+£hs+ K ZhR:(ij h3+(£] hs+(£j hy
K, " K,° K, H T T T
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b-2) Equivalent damping for viscous damping
Force including damping force is
) C. K :
F=C5+K5= m(—5+—5j =m(2hwd +@*5)
m m

For a harmonic excitation & = ae”

F :m(a)2 +2ha)pi)5:ma)2 (1+2h[£}ij5
@

This is the case to define the damping force to be dependent to the frequency of excitation.

This type of damping is called “viscous damping”.

Total complex stiffness will be

1 | 1 1
= + +
mw2(1+2h(pjz} ma,* | 1420, | L |i | mol|1+2h| £ |i| mo?|1+2h,| £ |i
@ Wy g W
Using the relationship
;zl—%(ﬁji
1+2h(pji @
(4
Then
L 1—2h(£ji S 770 2 P RO Y70 0 P L 9 (4 P
mao 1) mao, @, may @y mao, @,
From the real part

111 11 1
=gttt P o=t 2
o 0] o o K K, K, K,/ H

From the imaginary part
h(ﬁjzﬁ% 2Ky (2K, (2
w) K, w, | K ;) K./H Wy

In case of the resonance frequency, p =

or
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4. Freedom Vector
4.1 Node freedom

Each node has six degrees of freedom and the freedom number is defined as shown in the figure below.

Z 3 7.
A
6 -
X 1 Vi) » X
4 : 8
5 5 ),
Y Y Y
2
(a) lateral and rotational displacement (b) shear deformation of connection

Figure 4-1-1 Global coordinate

4.2 Freedom vector

The freedom vector is defined to indicate the number of all freedoms of the structure, where the restrained
freedom is set to be zero. For the structure in the figure below, the freedom vector has zero components for
the fixed nodes (Nodes 1-4) and eight components for other nodes (Nodes 5-8). Therefore, the total number

of freedom of the structure is 8x4 = 32.

Nodel [0
| .
__Noded 10|
Node 5 5 6
9
Node 6 ) : 7 \8
77 Ny
_____________ 16
17 1 2
77 /e
Node 7 7
_____________ 24| ’ !
)5 /e /e
Node 8 :
32 V') shear deformation of connection

Figure 4-2-1 Example of the freedom vector
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4.3 Dependent freedom
(1) Rigid floor assumption
In the default setting, the floor diaphragm is assumed to be rigid for the in-plane deformation. Therefore,

the in-plane freedoms at the nodes in a floor are represented by the freedoms at the center of gravity of the

same floor.

6
/\5_,1 5,8@m4’7

(a) In-place freedoms (b) Out-of-plane freedoms

2

Figure 4-3-1 In-plane and out-of-plane freedom

For example, the in-plane freedoms at the node A in Figure 4-3-2 are expressed by the in-plane freedoms at

the center of gravity G as follows:

u_, 10 [, |lug
u, =10 1 =1, Ruy, (4-3-1)
6, 0 0 1 (|6,

G: center of gravity

[
L A

92/1

u
vA
Figure 4-3-2 Rigid floor assumption
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In case of the structure in the figure below, in addition to the original nodes, new nodes for the center of
gravity are defined as “Node 5” and “Node 10”. Under the rigid floor assumption, the freedom vector has
zero components for the in-plane freedoms at the nodes except the center of gravity. Therefore, the total

number of independent freedom is 23.

Node 1-5

Node 6

Node 7

OOHOOXJNOOUIEOWNHROOO - O

Node 8 12 i

Node 9 17 VAL 4

20 V') shear deformation of connection

Node 10

2
0
0

Freedom vector

Figure 4-3-3 Example of the freedom vector with rigid floor assumption
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(2) Including wall element

The wall element model has rigid beams at the top and bottom of the wall, therefore, as shown in Figure
4-3-4, the rotation angles in the wall panel plane, ‘9y1 and 6’y2 , are dependent to the vertical

displacements, &, and J_,. Also, the horizontal displacement in the wall panel plane, u ,, is

z

dependent to the displacement, u ,.The connection is assumed to be rigid.

0

y2
4
0 A
v
Iy 0 _ 0 _ 522 B 521
v Y2 T w
521 522
................. Uy P 29 Uy =Uy
w

Figure 4-3-4 Relationship between node displacements for a wall element (X-wall)

In a matrix form;

u, 1 0 0 |{u,
0,r=|0 -U/w 1/w[{d, (4-3-2)
0 0 -1/w 1/wllo,,

y2

In case of Y-direction wall, the relationship can be written as;

U, 1 0 0 U,
=10 I/w =1/wlKo, (4-3-3)
- 0 I/'w =1/wl||0,

Figure 4-3-5 Relationship between node displacements for a wall element (Y-wall)
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For example, in case of the structure in the figure below, by eliminating dependent freedoms, the total

number of freedom becomes 17.

0
Node 1-5 :
0
0
0
1
2
Node 6 0
0
0
0
0
0
3
Node 7 4
0
0 6 Iﬂ 7 IQ
0 ]
. 105
0 8 9
{5 4 A
Node 8 g " @
0 1 2
o 777 777
0 3 ~ 4
10 777
Node 9 11 4
12
0
13
1451 \f) shear deformation of connection
16
0
Node 10 8
17
0
0

Freedom vector

Figure 4-3-6 Example of the freedom vector with a wall element
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(3) Series of walls

In case several walls are joined together in series, it is assumed that all walls are connected by rigid beams
at the top and bottom. Therefore, as shown in Figure 4-3-7, the rotation angles in the wall panel plane, Hyl

and @

2 are dependent to the vertical displacements, 0., and O_,. Also, the horizontal displacement in

the wall panel plane, u ,, is dependent to the displacement, u_, . The connection is assumed to be rigid.

0

YN

il
5;1‘ = 521 + eyiLi = (1 - L, /L)5z1 + (Li /L)§zN’ L= ZWI'

k=1

uxl :”xz :“.:uxN

Figure 4-3-7 Series of wall connected by a rigid beam (X-wall)

In a matrix form;

)
0,=[-1/L 1/L} 7 (4-3-4)
3 §ZN
)
5, =[-L,/L Ll-/L]{ “} (4-3-5)
5ZN
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In case of Y-direction wall, the relationship can be written as;

521’ = 521 - exiLi = (l _Li /L)5zl + (Lz /L)é‘zN’

uyl :uyz :..-:uyN

Figure 4-3-8 Series of wall connected by a rigid beam (Y-wall)

In a matrix form;

521
0,=[1/L —-1/L
52N

é‘zl
s, =[1-L/L L/L] 5

zN
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(4) Including ground springs

In case there are ground springs (sway and rocking springs) at the basement of the building, the floor
diaphragm of the basement is assumed to be rigid for both in-plane and out-of-plane deformation and the

freedoms other than sway and rocking freedoms are restricted at the center of gravity.

3
/4 53 I)
2
(a) Sway freedoms (b) Rocking freedoms

Figure 4-3-9 Freedoms of ground springs

In case of the structure in the Figure below, by eliminating dependent freedoms, the total number of

freedom becomes 21.
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0
Node 1-4 :
0
1
2
g
Node 5 1
0
0
0]
0
0
5
Node 6 6
0
0 6 Iﬂ 7 L)
0 7
8 105
0 8 9
7 il x
Node 7 8
0
0 1 2
< 0 7
0
0
0
9
Node 8 10
11
0
12
13
0
0
14
15
NOde 9 ].6
0
17
18
19
20
0
Node 10 0
21
0
0

Freedom vector

Figure 4-3-10 Example of the freedom vector with ground springs
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4.4 Transformation matrix of dependent freedom

In case of rigid floor assumption, Equation (4-3-1) expresses the relationship between dependent freedom

and independent freedom, that is;

/

u

xA 1 0 yA xG
u, =10 1 =1, Ruyg
0, 0 0 1 0
Dependent freedom Independent freedom

It can be arranged into the transformation matrix between the freedom vectors of all nodes;

k ] m
1 t— ) - :
Uy, | s :
52/4 _ uxG k
0., B ugl 1
(9yA 52G
ezA | exG
0,6
O;| m
/ T gl — \\
Dependent freedom [7; ] Independent freedom

Since the most components of the transformation matrix, [7, ], are zero, the components of [7,] are

remembered using two matrices, [N,] and [F,].

[N S ] = I |4—m—0-+ : Matrix for independent freedom numbers

[FI ] =17 -1-{-y71—~{y- ; Matrix for transformation components from independent freedoms

It will reduce the memory size dramatically.
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In the same way, for the case of including wall elements, Equation (4-3-2) expresses the relationship

between dependent freedom and independent freedom, that is;

u, 1 0 0 |ju,
0,r=|10 -l/w l/wlé,

yl

0, 0 -l/w 1/w]|d,,

y

Dependent freedom Independent freedom

It can be arranged into the transformation matrix between the freedom vectors of all nodes;

D q r
Uy
J gyl - it & Hiw 5y| p
6, 1w 1w Uy | q
5;,2 r

= —~— -

Dependent freedom [7;] Independent freedom

The components of two matrices, [N,] and [F,] will be;

[N I ] =J ; Matrix for independent freedom numbers

[F ; ] = ; Matrix for transformation components from independent freedoms
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Initial conditions of [N,] and [F,] are:

In Figure 4-4-1 (rigid connection), the element node displacement vector of the beam element between

Node 8 and Node 9 is,

0, S5 Ouf (4-4-1)

X

{MZS uz9 9
Those displacements correspond to the location numbers in the freedom vector as;

0, 5, O,/ =45 51 47 53 43 49) (4-4-2)

»9 x

{MZS Z429 0

Node 1-5

Node 6 33

Node 7 39

Node 8 45

A
N

N
(@]
SOV OOV OOOWNHOOO O

Node 9 51( 10 1 Z

Node 10 58| 0 v

60| 15 (rigid connection)

Freedom vector

Figure 4-4-1 Example of location matrix for beam element
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From rigid floor assumption, the components of independent matrices, [N,] and [F,] will be;

43155 60 O 4311 Iyg 0
45145 0 O 4511 0 O
47147 0 0 4711 0 O
[NI]: > [F1]= (4-4-3)
49155 60 0 49 |1 ly9 0
51151 0 O 5111 0 O
53153 0 O 531 0 O

From the matrix, [NV, ], the freedoms of (43) and (49) are replaced to the independent freedoms (55) and

(60). Therefore, the independent location numbers and freedom numbers of the beam element are:

Wy uy 04 0, 54 5.f
= {45 51 47 53 43 49}
= {45 51 47 53 55 60}; independent location number
{“ 0,0 Uy O }T
={5 8 7 10 11 13}'; freedom number
(4-4-4)
The transformation from independent displacements (= global node displacements) to element node

displacements is obtained from the matrix, [F) ], as follows:

U 1 0] U U
Uy 1 U U,
= 1 S e (4-4-5)
0, 1 0, 0,
O, Ll {u gy, Uy
5] |0 1 ly9_ 0.0 0.0
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4.5 Stiffness matrix corresponding to independent degrees of freedom

The constitutive equation of the beam element and formulation of global stiffness matrix from element

stiffness matrix are shown below:

5 8 7 10 11 13

Py kss ksg ks, ksyo o ksyo ksyy || ug
P, 8 k8,8 k8,7 ko ks,n k8,13 U
My | 7 ks \k%11 ko || 0,4
My9 10 10,10 k\l(},u\ k10,13 9y9
P 11 sym. k11,11 \‘lfil,w U0
M., 13 L k12\,1~2\_ 6.1

v Locate element stiffness

. . .
Element stiffness matrix ’, according to the freedom number

123 45 6 1 8\\? 100 11 12 13
\

1 \ ]

\
2 \
3 \

\
4 \

1
5 ks s ks, ksg '5.10 ks ks
6 v
7 by oy S
8 kg g ksio ks ks
9
10 koo Kron Kio1s
11 sym. k11,11 k, 1,13
12
13_ k13,13_

Global stiffness matrix

Figure 4-5-1 Formulation of global stiffness matrix

In general, the transformation from independent displacements (= global node displacements) to element

node displacements for the X-beam is described as Equation (2-1-13).
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uzA
Uyp U,
o u
=Tk (2-1-13)
0, :
5xA un
5xB

And the constitutive equation of the X-beam is also described in Equation (2-1-20).

A U,
P. u

=k, (2-1-20)
Pn un

Using the same procedure in Figure 4-5-1, the element stiffness matrix is added into the global stiffness

matrix.

4.6 Mass matrix corresponding to independent degrees of freedom

Mass is assigned in each node. The inertia force at the node will be also transformed according to the

transformation of the variables. Here, the rotational inertia at each node is ignored.

(1) Rigid floor assumption

o/ o/ Y/ Yz

The inertia force at the node A is

P, —m i, m, 0 0|,
P r=y—myi,r=— 0 m, 0 i'i‘yA (4-5-1)
0 0 0 0 0|6,
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Under the rigid floor assumption, the in-plane freedoms at the nodes in a floor are represented by the

freedoms at the center of gravity of the same floor. Therefore,

i, 10 [, ||ig U 1o [,
iiyA =0 1 —le iin :[TA] iin , [TA]: 0 1 _le (4-5-2)
6, [0 0 1 |6, 0., 00 1
G: center of gravity
G >
/
[ x

A Ar»PxA

P
On the other hand, the inertia force at the center of gravity is calculated as, yA
P Py L0 07, Py
T
Pg = P =10 1 O0§Pgr=[T,] 1Ps (4-5-3)
M =G lyARcA - lePyG lyA _le 1 0 0
Therefore,
P 1 0 Of|P, m, 0 0]fi,
T ..
Por=|0 1 OQRP,t=—[T,]|0 m 0 il
M . lyA -1, 110 0 0 06,
(4-5-4)
m, 0 0 i m, 0 ly Wy i
T .. ..
=—[T,]| 0 m, 0|T,] Uy e=— 0 m, ~l m, Uy,
0 0 0 O Limy —Lgm, (L,+0)m, |
If we ignore the off-diagonal components,
PxG mA 0 0 iixG
Psr=— 0 m, 0 U (4-5-5)
Mg 0 0 m,(L,+0,) Y
Taking the sum of the inertia force from the all nodes at the same floor,
P mg 0 0 i N N
Pot==1 0 m; 0 |G, mg =Zmi, 1. :Zm[(ljc +l;) (4-5-6)
M 0 0 I;]|0, l I

where, N is the total number of the nodes at the floor.
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(2) Including rigid beam

The wall element model has rigid beams at the top and bottom of the wall, and the horizontal displacement

in the wall panel plane, u _,,is dependent to the displacement, u .

The inertia force after transformation is

ARl P i

Therefore, the horizontal mass is

P, = (ml +m, )uxl

P, P, P,
| — o >
1 m 9 [ ™ 1] m+m, 9

o/ /e 7777

On the other hand, the vertical mass is the same as before.

P, P,

o
o

—
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(3) Series of rigid beams

In case several walls are joined together in series, it is assumed that all walls are connected by rigid beams

at the top and bottom.

The all horizontal displacements at the nodes are dependent to the horizontal displacement of
the first node, u .

uxl :uxZ = =u

xN
Also, the vertical displacement at the middle node o, is dependent to the vertical displacements of

the nodes at both ends, &, J,,.
L L.
521‘ =/1-— 521 +| = é‘zN
L L

Therefore, the horizontal mass is

N
P, :(ml +m2+"'+mN)iix1 =(Zmi]i[xl

i=l1
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The vertical mass is

z1 F)zz F)zN
1 ml i mi N mN
/e
L
L
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5. Equation of motion

5.1 Mass matrix

In the default setting, the mass at each node is identical and equally distributed as

1
M, = M 4, (5-1-1)

Sfloor
where, M, : mass at the node i, M g, : total mass of the floor, N, : total number of nodes in the
floor.

However, you can change the mass at each node depending on the place of the node by setting “proportion
to influence area” in Option Menu. In this case, the mass at each node is determined from the following

equation:

A,
M =—M

; (5-1-1)
Aﬂoor

floor

where, 4, : influence area of node i, A, : total area of the floor. Influence area of the node is different

depending on the place of the node as shown in Figure 5-1-1.

1 J
» X » X
T M 'y
Ai, M Aj M liy
Gy
< > @ I
k llx MG
A, My
v v G : center of gravity of the floor
Y Y
(1) Influence area of the node (2) Mass and rotational inertia at G

Figure 5-1-1 Mass and rotational inertia at the node

The process to determine the mass based on influence area is as follows:
Step 1. Calculate the slab area (block with cross mark)

Step 2. The area of the block is divided equally to the corner nodes. (Figure 5-1-2)

Step 3. If there is no corner node, the area is divided equally to the all nodes in a floor. (Figure 5-1-3)
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Figure 5-1-2. Influence area of the node (red)

Figure 5-1-3. Distribution of the rest area

Example)  Floor weight = 700kN

700kN/8 50kN+12.5
= 87.5kN 87.5kN Z 62 5kN 112.5kN

112.5kN
87.5kN 87 5kN

62.5kN

87.5kN 87 5kN 62.5kN

112.5kN

87.5kN 87.5kN 62.5kN 112.5kN
(a) Same for all nodes (b) Proportional to influence area

Figure 5-1-4 Example of mass distribution
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In case of rigid floor assumption, in-plane freedoms at the nodes are dependent to the freedoms at the

center of gravity of the floor. Therefore, the mass at the center of gravity, M ., is,

Mg;=M,,, (5-1-2)

The rotational inertia at the center of gravity, /g, along the z-axis is obtained from the following equation:
N

I =Y M2 +1}) (5-1-3)

where, N is the total number of the nodes at the floor. The rotational inertia at other nodes are,
I,=0, i=1---,N (5-1-4)

The mass matrix is obtained as,

0 0
0
uxi Mi Mi
u, M, M,
[M]_ 521‘ Mi = Mi
- exi Ii Ii (5-1-5)
0, I, I,
021‘ Iz Ii
_0 O . - — -

Since the mass matrix has only diagonal components, those components are saved in one-dimension vector.

For example, the mass vector of the structure in Figure 5-1-5 will be as follows:

Mg
Node 6 0
M,
Node 7 0
M,
0 6 Ih ! L)
Node 8 0 , 105
M, 8 9
0 47 N
Node 9 0 1 9
M, /e - /e
M, 3 #* 4
Node 10 1, e 77777

Figure 5-1-5 Example of mass vector
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In case a complete rigid floor such as a foundation slab for the ground springs, we need to calculate the

rotational inertia at the center of gravity along each axis.

s

The rotational inertia along Z-axis is

a2 b2 el 0oy
a I, = j pridV = j j (TJ(XZ +3" ) dxdydz
—al2=b/2—c/2 abc
M (2 b2 2 a2 b2 e/2
b %’ X =—( j xzdxj dyj dz + j dxj yzdyj dzJ
abe| 3, -b2 —c/2 —al2  -b/2 —c/2
M
v —E(Cl +b )
Y (5-1-6)
In the same way, the rotational inertia along X-axis is
My
I, _E(b +e ) (5-1-7)
The rotational inertia along Y-axis is
Mo, s
I, —E(a +e ) (5-1-8)

If the mass is located at each node, as already mentioned, the rotational inertia at the center of gravity, /g,

along the Z-axis is obtained as

I, =[prdv =3 M1 +1’) (519
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M, 4

l[y
Gy
< > @ I
lix MG

v G : center of gravity of the floor
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5.2 Stiffness matrix

1) Global stiffness matrix

As shown in Figure 4-5-1, the global stiffness matrix [K ] is formulated from the element stiffness

matrices.

5 8 7 10 11 13

Py kss ksg  hsyo ks ksyo ks |[ug
P, kys  kep kg ki kg || Ul
M _ ks \k7 n ko 9y8 Example of beam element
Myg 10 10,10 \163.1\ k10,13 9y9
P 11 sym. ki1 \‘lfil,w Usio
le() 13 L klZ\,PQ\_ 9210

v Locate element stiffness
. . .
Element stiffness matrix ’, according to the freedom number

123 45 6 17 8\\? 100 11 12 13
\

1 \ |
\
2 \
3 \
\
4 \
1
5 ks s ks, ksg 5,10 ks ks
6 v
7 ki, kg ko, ks
8 ks,x ks 10 ks,n ks,
9
10 k1o,1o klO,ll k10,13
11 sym. k11,11 k11,13
12
13| ks )

Global stiffness matrix

Figure 5-2-1 Formulation of global stiffness matrix
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2) Skyline method
Usually, the global stiffness matrix [K ] is symmetric and sparse as shown below. To save the memory
size of the computer and to reduce the calculation time for the linear equation solver, the elements in the

upper triangular part of the matrix under the Skyline (bold line) are stored in a one-dimension vector.

Global stiffness matrix [ K ] _ Stiffness vector

1 | k11
K11 12 14 / "(1?
K22
k21 [|k22 #x23 #x25 |(2? 3 | K21
K32 ||K33 |[K34 [Jk35 ka7 4 |K33 l
5 | K23
Ka1 | Ka2 | K43 ||kaa ||Ka5 |K4? [>
6 | ka4
K51 | K52 | K53 | K54 ||k55 ‘TKEE |K5? ss 7 | K43
K65 IKEE |KE? K68 8 10 |y
9 | K14
k71 | K72 | K73 | K74 | K75 | K78 ||K77 [JKCT8
K55
K85 | K86 | K87 ||kss 1 | ka5
- 12 (K35 | |
Skyline height 13 | k25
N
Diagonal element order 15 | K56
K77
1 2 4 6 10 14 16 23 27
17 | K67
Band width ( = the maximum skyline height) 18 | Ko7
- 19 | K47
20 | K37
21 | K27 | ¢
22 | K17
K88
24 | K78
25 |Kes | |
26 | K58
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5.3 Modal analysis

1) Eigen value problem

The free vibration equilibrium equation without damping is

[ Jii+ [K Ju} = {0} (5-3-1)

where [K ] is the stiffness matrix and [M ] is the mass matrix in the form;

mo 0 0
[Mm]= (:) mf 0 (5-3-2)

n

The solution can be postulated to be in the form

fuj=1p} e (5-3-3)

where {¢} is a vector of order n, @ is a frequency of vibration of the vector {¢} .

Substituting into the equilibrium equation, the generalized eigen problem is obtained as,

[Kig} = o*[M Jig} (5-3-4)

This eigen problem yields the » eigen solutions (0)12,{ ]}), (0)22 ,{ 2}),---, ((02 {¢n }) where the eigen

n?o

vectors are M-orthonormalized as,

{ﬁ}T[M]{%}:zi:mﬂ%,k =0 5 Q%] (5-3-5)

-.- )
Let’s assume two different set of eigen solutions (a)l.2 , {¢1 }) , (a)z. , {¢] }) .
Form Equation (5-3-4),

(o} [Kle = 1o ((K]g}) =0’ {0} M9, (53-6)
Since [K ] and [M ] are the symmetric matrices,
) KMo} = (o} ((K1e) =0 (o) MIig} =0 (0} Mg} o3
Subtracting Equation (5-3-7) from Equation (5-3-6),
(@~ ){g) [M]{g,} =0 (5-3-8)

Since @, # @, we obtain Equation (5-3-5).
The vector {¢l} is called the i-th mode shape vector, and @, is the corresponding frequency of

vibration.
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2) Modal decomposition of equilibrium equation
Defining a matrix [(D] whose columns are the eigenvectors and a diagonal matrix [Qz] which stores the

eigenvalues on its diagonal as,

2
@,

=) ) - @l R 539)

2
w

n

We introduce the following transformation on the displacement vector of the equilibrium equation (5-5-2):

{u@)} =[@]{q()} (5-3-10)
Then,
[M][@]{g}+[C][®]{¢}+[K][®]{q} ={P} (5-3-11)

Multiplying [q)]T ,

o] D[]t} (o] [Cll)d) o] [K][e]id) ~[o] (7) 312
where
of palfo)=[m]=| "™ .| m=ia) M) (5313
1;1 —
(o] [][e]=[0][e] [][e]=[][#7]=| * =[K]. k=0,
K,
(5-3-14)

A damping matrix that is diagonalized by [q)] is called a classical damping matrix.
[@] [c][®]=[C]= T (5-3-15)

where, [M ] ,[5] and [IZ} are called generalized modal mass, modal damping and modal

stiffness matrix, respectively.
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Therefore,

[m]{gy+[C{a}+[K J{a} =[®] {P} (5-3-16)

It can be reduced to n- equations of the form

mg, () +¢.d,(t) + kg, () =r.(1) (5-3-17)
X, ()

where 7.()={¢}' (PO} =—{¢} [M][U]} 7,0 (5-3-18)
Z,()

By setting ¢, /m, =2h,w, and l;l [m, =]

X,
G0+ 2hog,0+0 g0 =—{B} { 1,0) t=—{B.X, O+ B, 1,0+ B Z, 1)}

Zy(0)

(5-3-19)
where
(py - 10y M ) IM[v v v ] T 5390
o) (M)} (¢} [M]{4) e

il ={¢%}T[M]{U”y’z} (5-3-21)
T e} Mg}

B, is called “participation factor” of i-th mode.

Bi.. ,.- 1s the coefficient when you decompose the vector {U x,y’z} into mode vectors as,

Ut =[018,,.)= Zﬂ,xy (5-3-22)
")

Multiplying [(I)]T [M ],

[o] [M){v.,.}=[@] [M][}{A.,.}=[M]{5.,.} (5-3-23)
Therefore,

(=[] [o] [M]{U.,.} (5-324)

It is equivalent to Equation (5-3-21).

294



Equation (5-3-17) can be decomposed again as,

X(0)+2hox, (1) + a)izxi (1= _Xo(l)

F(+2h0,3,(0) + ]y, (1) = =1,(1) (5-3-25)
Z(t) + 2oz, (1) + a)izzi ()= _Zo (1)

and

4= B, %O+ B,y (O+ 5,20 (5-3-26)

Therefore, the displacement vector is obtained by superposing displacement responses of

single-degree-of-freedom (SDOF) systems in each mode and each direction as,

fu} = [@){a)} = X {a}a. 0= Zﬁ,x ,x(t)+Zﬂ,y (t)+2ﬂ,z ¢}z,
: (5-3-27)

,Bl.’x {¢1} is called “participation vector” of i-th mode in x-direction.

3) Effective modal mass

The kinematic energy of the vibration is calculated as,

£ = {0} [M{a(0) (5:329)

For simplicity, only the x-directional response is considered. Then, mode decomposition of the velocity

vector is

@} =[@]{q(n)} Zﬁ, RUASA0 (5-3-29)

Substituting into equation (5-3-28), we obtain

E = {0} [MY{a(0} = ao} [o] [M[0)d0} = o} [7]{0)

1 o1 1
:_melxl +_me 2x2 teet— me nxn
2 " 2 ° 2
(5-3-30)
where m,; = ﬂl.zn_ii is called the effective mass.

That is, the kinetic energy of a structure can be decomposed into the sum of the kinetic energies of
one-degree-of-freedom systems with effective masses in each mode.

_ 1
E=e, +e,,++e,,, e, —Emelxl (5-3-31)

Therefore, when determining which vibration mode is dominant, the ratio of effective mass to total
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(5-3-32)

effective mass

n
71'::nqai :E:’nej

k=1
is sometimes used. This is called the effective mass ratio.

In addition, the following relationship holds.
r AV M{U
m,; =B = p, qj’}T[M]{U} = f g} [M]{U}=({ }T[ ), (5-3-33)
@ [(M]id} @y [(M]ig
=Zn:mi (5-3-34)

Equivalent one mass model
(5-3-35)

4)
If we consider the first-order mode to be dominant in a multi-story building, the displacement distribution

is expressed as,

{“(Z)} =B {¢1}x1(t)

If we consider that the response is harmonic near its maximum value,
(5-3-36)

{”(t)} =B {¢1 } Spe™

where S, is the displacement response spectrum of the first mode.

S

u, = ﬁl(”l,iSD

Rt &

The acceleration response is
(5-3-37)

i)} =(~07) B {0} Spe™ =5, {4} S,e™

where S, = a)le  1s the pseudo acceleration response spectrum of the first mode.
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Besides the energy-based definition, the effective mass, m,, can be defined from the condition that the
(5-3-38)

base shear, (J,, is equal in the two models. The base shear of the multi-story building balanced by the

inertia forces of the upper floors is
Oy = _z mi; (t) = zm; (ﬂlSA¢l,i) =4 [Zmi¢l,i j S,
i=1 i=1 i=1
The base shear of the SDOF system is,
Op=m,,S, (5-3-39)
Therefore,
n 2
n [Z md, J
m,, = f (zmi¢l,ij = l? (5-3-40)

! Z mz¢1,i2

i=1

(5-3-41)

The effective height, /1, is obtained from the condition that overturning moment at the base of the
building, M ,, is equal in the two models. The overturning moment of the multi-story building is

M, = Zm[iii (t)Hi = z mH, (ﬂlSA¢l,i) =5 (Zmz‘HiQ,ijSA
i=1 i=1 i=1
The overturning moment of the SDOF system is,
My=H,(m,S,) (5-3-42)
Therefore,
b (ZmiHiﬂ,ij ZmiHi¢l,i

H, =—= =L (5-3-43)
e Z mz’¢1,i

i=1

The displacement of the representative point is defined as
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n

Nomid Y m(Be,S,) Yme}
i=1

A== =- =5 1:1 Sp=5p

Zmiui Zm[ (ﬁ1¢1,5SD) zmi(pl,i
i=1 i=1 py

It is consistent with the displacement response spectrum.

Also, the acceleration response spectrum is obtained as
n
Q Z mi¢1,[2
SA — B _ _ i=l QB

m n 2
el
(Zmiﬂ,[j
i=1

5) Initial condition

The initial conditions are obtained from Equation (5-3-10) as,

(] [M]{u)}

[o] [M][@]{q}=[M ]{q()}
Therefore,

(@) =[] [O] M)}, (), =[] [@] [M]{a},,
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5.4 Damping matrix

Reference:

T. K. Caughey, M. E. J. O’Kelly, “Classical Normal Modes in Damped Linear Dynamic Systems”, J. Appl.
Mech. Sep 1965, 32(3): 583-588.

1) Proportional damping

The general form of the proportional damping is given by Caughey as follows:

[C]=[M]a, +a,[M]" [K]+a ([M]" [K]) +-+ay, ([M]" [K])’“} (5:4-1)
From the eigen problem [K]{p,} = 02 [M {0}

[M] [K o) =0 {0} (5-4-2)

Substituting into (5-4-1),
[Clto =M o+ (] (K)o ([T [K]) o, (] [K]) o)

= {ao +ao” +a, (60,-2 )2 et ay, (0%2 )Nl}[M]{q’i}

(5-4-3)
Therefore, the damping matrix is diagonalized by [CD] as
G
T = c,
[@] [C][e]=[C]= . (5-4-4)
Ei’l
2 N-1
c = {ao taw +a,(0]) ++ay, (@) }n_ai (5-4-5)
The damping factor is obtained as
C l|a _
h=——=—Lta0+a,0’++a, o (5-4-6)
20.m;, 2| o,
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When a,#0, a =a,=--=a, =0, from(5-4-1)
[C]=a,[M] (5-4-7)

This is called a mass-proportional damping.
From (5-4-6), the damping factor of the mass proportional damping is

=L

1

= 5-4-8
o (5-4-8)

Therefore, the coefficient g, can be determined from the damping factor /1, of the first mode as
a, =2hwo,
When a, #0, a,=a,=a,=---=a,_, =0, from (5-4-1)

[Cl=a[K] (5-4-9)

This is called a stiffness-proportional damping.

From (5-4-6), the damping factor of the stiffness proportional damping is

a

h =—o, (5-4-10)
2

Therefore, the coefficient @, can be determined from the damping factor 4, of the first mode as
2h,

a,=—n- (5-4-11)
a)l

As you can see in the figure below, the damping factor in mass-proportional damping becomes smaller for
higher-order modes. On the other hand, the damping factor in stiffness-proportional becomes larger for

higher-order modes.
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When a,#0, a, #0, a,=a,=---=a,_, =0, from (5-4-1)
[C]=a,[M]+q[K] (5-4-12)

This is called a Rayleigh damping.
From (5-4-6), the damping factor of the Rayleigh damping is
a, 1 q
=t (5-4-13)
2w 2
The coefficients a,, a, can be determined from the damping factors £, h, of the first and second

modes. Expressing (5-4-13) for these two modes in matrix form leads to:

111w o ||a

hl _1 1 1 0 (5-4-14)
h| 2o, o||q

Solving the above equation, we obtain the coefficients @, a :

_ 20,0, (wlhz - a)Zhl)

a, =
0 a)l2 —a)22
(5-4-15)
_ 2(a)lh2 _wzhl)
1 2 2
o, — 0,
h

In the case of mass proportional damping, the size of the damping matrix is the same as the mass matrix, so
only the diagonal components need to be stored. In the case of stiffness-proportional damping and
Rayleigh damping, the size of the stiffness matrix is the same as the stiffness matrix, so the memory size

can be reduced using the skyline method.
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If you want to specify the damping factors up to the L-th mode (L = N), by setting

a,=a,,,==ay,=0 in(5-4-6)
l|a _
h, :E{—°+ala)i +ta,0’ ++a,_ 0t 1} (5-4-16)
a)i

In a matrix form

hl l/a)l @ a)lzk1 4,
20-1
h, :l 1/'(02 W, - @ a.l (5-4-17)
2
h, l/a)L W, - Ct)L2L71 a;
Solving the above equation, we obtain the coefficients a,, a,,---,a, _, .
From (5-4-4), the damping matrix is obtained as
G
. 1 -1 C. -1
[]=(le]) [l(e) " =(fe]) | = . |(@]) (5-4-18)
c,
where
C = {ao +a0’ +a, (a)i2 )2 +ota, (a)i2 )H}ﬁi (5-4-19)
1,
o r\! 1/’%2
Substituting ([(D] ) =[M][®] . : (5-4-20)
i,
b
b, r
[C]=[X] . [X] (5-4-21)
bﬂ
¢, 2ho
h X|=|M|| D b=—"L=—11 -4-
where [X]|=[M][®], b FE- (5-4-22)

This is called a Modal damping.
In the case of modal damping, where the order is 3 or higher, the damping matrix is a full matrix and

requires a larger memory size than the mass matrix or stiffness matrix. For this reason, STERA 3D does
not employ modal damping.
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2) Instantaneous stiffness proportional damping

In STERA 3D, there are two types of stiffness-proportional damping.

One is the proportional damping using the initial stiffness matrix:
2h

[c]="[K,] (5-4-23)
@,

where, h: damping factor, @, : circular frequency of the first natural mode, [K 0 ]: the initial stiffness.

Another is the proportional damping using the instantaneous stiffness matrix
2h
[c]= — [, ] (5-4-24)

where, h: damping factor, @,: circular frequency of the first natural mode, lK pJ: the instantaneous

stiffness changing according to the nonlinearity of structural elements.

In the scene of the practical design of Japan, it is common to use the proportional damping using the

instantaneous stiffness matrix.

3) Damping matrix with a base isolation building
In the actual design practice for the base isolation buildings, it is common to assume zero viscous damping
for horizontal components of the base isolation floor. For example, in case of the stiffness-proportional

damping, the damping matrix is defined as:

2h
[C]= ;([ K o |+ [ Krs ]) (5-4-25)
where,
lK upper J: the stiffness matrix consisted with upper structures without base isolation elements,

[K BI V] : the stiffness matrix of base isolation elements for vertical components.

4) Damping matrix with viscous damper devices
If there are some viscous damper devices in a structure, in addition to the proportional damping matrix, the

global damping matrix formulated from element damping matrices are considered as:

[c]=|c,,|+[c.] (5-4-26)

where, lC J: the proportional damping matrix, [CV]: the global damping matrix formulated from

pro

element damping matrices in the same manner of the global stiffness matrix.
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5.5 Input ground acceleration

Earthquake ground motions are defined as three components acceleration; X 0 Y , and Z 0-inX,Yand Z

directions. The inertia forces at node i are defined as,

— M, (i, + X,) i 1 00 ii

_ Mi((iiyl.+Y;))) i, 01 0|y i, P

_Mi 5zi+ZO _ 521’ 0 0 1 “0 _ gzi “0
_[ién = _[M]< éx,» _[M] 00 0 ;0 - _[M]< éx,» _[M][U] ;0 (5-5-1)
~1,0, g, 0 0 0|7 g, 0
—1 iézi ézi 0 00 ézi

For example, the components of the matrix [U ] of the structure in Figure 5-5-1 will be as follows:

X, Y, Z,
[0 0 1]
Node 6 0 0 O
00 1
Node 7 0 0 O
0 0 1 Iﬂ
00 0 6 7%
Node8 [0 0 0 0%
00 1 8 /9
00 0 x e
Node 9 0 0 0 1 9
100 77/77”5 vz
010 3 # 4
Node 10 10 0 0 e 7777

Figure 5-5-1 Components of the matrix [U ]
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Equilibrium condition of the structure under earthquake ground motion is:

X,
[l +[& Jouy = - i}~ [ JU T
— Z
Damping force / - g _
Restoring force Inertia force

Finally the equation of motion is obtained as:
X,
(v R+ [Cli+ [K Y} = [M QUL ¥, = 1P}

Z,
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5.6 External force by vibrator

A vibrator is assumed to be located at the center of gravity at a certain floor. The external forces from the

vibrator are denoted as F, I , inXandY directions.

e

o o o o .M
o o o 0 © —
o 0 o o~ ©

For example, the components of the matrix [V] of the structure in Figure 5-6-1 will be as follows:

F.F,
o0 o
Node 6 00
00
Node 7 00
0 0 Iﬂ
0 0 6 7 IQ
Node8 |0 0 "10.%
00 8 /9
- e e
Node 9 0 0 1 9
1 0 /e - /e
0 1 3 7 4
Node 10 |0 0] e 7777

Figure 5-6-1 Components of the matrix [V]
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Equilibrium condition of the structure under vibrator force is:

CEABEEERG o

y

[ — [ — —_—
/
Damping force / \
Inertia force

Restoring force External force

Finally the equation of motion is obtained as:

) [Cla s Y 01 1 56
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5.7 External force by wind

A wind force is assumed to be applied at the center of gravity at each floor with the constant distribution
along the height of the building. The external forces at i-th floor from the wind are denoted as

h F, (t), h F (t) h M. (t) in X, Y horizontal directions and Z rotational direction.

Ly"y 2Ty

Figure 5-7-1 Wind force distribution

h (1) h, 0 0

ol e [3
0 =[]y F,(t) ;. [7]= o o0 o (5-7-1)
0 Mz(t) 0 0 0

b, M_(1) 0 0 k.
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For example, the components of the matrix [W] of the structure in Figure 5-7-1 will be as follows:

FX F‘y MZ
0 0 0]
Node 6
0 0 0
0 0 0
Node 7
0 0 0
0 0 0 5 Iﬂ 7 IQ
0 0 0 /
Node 8 105
0O 0 0 /4—*
8 9
0 0 0 ] el
Node 9 g g g 1 9
/778 Y4
h, 0 0 5,
0 h, O 3 4
Node 10 O I e
L r’l -

Figure 5-7-2 Components of the matrix [W]
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Equilibrium condition of the structure under wind force is:

F
[CRup+[K [y =AM iy +[W]; F, (5-7-2)
—_— —— —
S =
Damping force \
Restoring force Inertia force
External force
Finally the equation of motion is obtained as:
FX
[m iy + [CT{uf+ [K{u} =[] F, =P (5-7-3)
/4
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5.8 Numerical integration method

Two numerical integration methods are prepared; one is the Newmark-f method with incremental
formulation using a step-by-step stiffness matrix, and another one is the Force correction method using a
step-by-step stiffness and a force vector together. In case it is difficult to define the step-by-step stiffness of

the element such as the case of using a viscous damper element, the Operator Splitting method is selected.
a) Equation of motion and its incremental form

The equation of motion of a structural system is written as,
[M{aj+[Cl{vi+[K]{d} ={p} (5-8-1)
where, [M ], [C ] and [K ] are the mass, damping and stiffness matrices. {d } , {v} s {a} and { p}

are the displacement, velocity, acceleration, and external force vectors.

The incremental formulation for the equation of motion is,
[M]{Aa,}+[C{Av,} +[K]{Ad,} = {Ap,} (5-8-2)

where, {Adl.}, {Avl.}, {Aal_} and {Api} are the increments of the displacement, velocity, acceleration,

and external force vectors, that is,
{Adi } = {di+l }_ {di }, {Avi } = {Vi+1 }_ {Vi }’ {Aai } = {ai+l }_ {ai }’ {Api } = {pi+l }_ {pi} (5-8-3)

In case of a system with hysteresis nonlinearity, the equation of motion can be described as,
[Maj+[CTfv}+{1 (@)} ={p) (5-8-4)
where f (d ) is the force as a nonlinear function of the displacement {d } . The incremental form can be,

[M]{Aa}+[CT{Av,}+{4f,(d)} = {Ap,} (5-8-5)

In a small time-increment, it can be assumed as a linear relationship in force-deformation as shown in

Figure 5-8-1,
{Afi (d)} :[Ki]{Adi} (5-8-6)

Finally, the equation of motion in incremental form is the same as Equation (5-8-2), that is

[M]{Aaj+[Cl{Av}+[K ]J{Ad ) = {Ap,] (5-8-7)
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Figure 5-8-1 Nonlinear force-deformation relationship

In the initial condition, the building will deform under the gravity load, i.e., the dead and live loads. It can

be analyzed by solving the following equation,
[ fay (€1} + (K]} = [M][0)] (5520

where g is the gravity acceleration. When the gravitational acceleration is initially applied, the response

may fluctuate in the beginning. Therefore, it is better to apply the static gravity force { fo} instead of

acceleration as,

X, 0
[Ma}+[CHvp+[K]{d} ==[M][U % (+{/}, {f}=—[M][U]50 (5-8-27)
Z, g

and set the initial displacement as {d } = {do} , where {do} is the solution of

[K]{do} ={/o)

The incremental form will be
AX,
[M{Aaj+[Cl{av }+[K ]{ad | =-[M][U]} AY,
ANZ

0
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b) Newmark-f§ method

The incremental formulation for the equation of motion of a structural system is,
M RAa j+[CRav,j+[KKad, §- (a7} = {ap;) (5-8-1)

where, [M ], [C] and [K ] are the mass, damping and stiffness matrices. {Adl.}, {Avl.}, {Aal_} and

{Api} are the increments of the displacement, velocity, acceleration and external force vectors, that is,
{Adi } = {di+l }_ {di }, {Avi } = {Vi+1 }_ {Vi }’ {Aai } = {ai+l }_ {ai }’ {Api } = {pi+l }_ {pi } (5-8-2)

{Af } is the unbalanced force vector in the previous step.

Using the Newmark-§ method,

(o} ={d )+ (v, (80) ¢ (%_ ﬁj{a,.}(m)z + Pl (ar) (5-83)
o} =5 (e} +a ) (a0) 534
The incremental form is
(= b Yae) o o) + o) (585
{av,} = fa, o)+ - {aa, ) 550
From Equation (5-8-5), we obtain

1 1 1

Ao~ IAdV-—— Kl 8-

{Aa,} Sy {Ad, } M wi-5 ; la,} (5-8-7)
Substituting Equation (5-8-7) into Equation (5-8-6) gives

1 1 1
{Avi}zM{Adi}—ﬁ{vi}{l—ﬁm@» 559

Equations (5-8-7) and (5-8-8) are substituted into the equation of motion, Equation (5-8-1), and we obtain

1 1
ad, {W[Mhm[cm}

={Ap,.}+[M( ! {vi}+${af}}+[c{${vi}+[5—lj{ai}<m>}mf}

(5-8-9)
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The equation can be rewritten as,

[I% J {Ad,f=1{p, | (5-8-10)
where,
[I%]:[K]-FZﬂEAt)[C]_'—ﬂ(it)z [M] (5-8-11)

=t o o] -1 e

(5-8-12)
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¢) Operator Splitting method

The Operator Splitting (OS) method is a type of mixed integration method in which stiffness is divided into
linear and nonlinear (Nakashima, 1990). The explicit predictor-corrector method is employed for the
integration associated with the nonlinear stiffness, whereas the unconditionally stable Newmark-p method

is used for the integration associated with linear stiftness. The formulations are described as follows:

Using the Newmark-f§ method,
1

(d.)1={d) +{v,.}(m)+(5_ ,Bj{ai V(A + Bla ) (Ar) (5-5-13)

1

W) ={v} +§({ai} +{a,,})(Ar) (5-8-14)

Introducing the predictor displacement {d ; +1} as,

(@) :{d,.}+{v,.}(m)+(%- ,Bj{ai}(At)z (5:5-15)

Equation (5-8-13) can be written as

{dio}={d.}+Bla.}(ae) (5-8-16)
Therefore
1 ~ 1
ir1f = di+ - di+ = Adi+ (5-8-17)
{a:} ,B(At)z({ ¥ { 1}) ﬁ(At)z{ ¥
where
{Adi+1} = {dHl } - {gi+1} (5-8-18)
Substituting Equation (5-8-17) into Equation (5-8-14),
1 1
{VHI}:M{Adﬂl}—'—{‘}i}—'—z{ai}(At) (5-8-19)

In the equation of motion,

[M{a }+[CHvi} +{/ (di)} = {Pi} (5-8-20)
The nonlinear internal resisting forces are approximated as follows:

U () =[K]{d.. }-{ar) (5-8-21)
where

&y =[K1{d..} - {f (d.. )} (5-8-22)
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In this formulation, [K ] is the initial stiffness matrix.

Force
[K]{di+l} 4----=-- f‘ ———————————————
Af
{f(dy)} l===-maeeeon ~- @ Corrector
[K){d} ===~ |
.} ./
/ i
{ f (c?Hl )} s : Predicitor
L] : : » Displacement

»

The nonlinear internal resisting forces can be written as,
(f(d)}=| K(d0)|{ad b+ {7 (d.0)] (5-8-23)
where [K (c?, " )] is a predictor stiffness.

The predictor stiffness is not necessary to be the initial stiffness and if the predictor stiffness is close to the
tangent stiffness, the corrector force is more accurate. It is known that if the predictor stiffness is larger than

the tangent stiffness, the OS method is unconditionally stable.

Force
A
Corrector
{f (dm)} - - ————————— ===
4.—-i—/ [K (dmﬂ
{f (‘?m )} T Predictor

L

» Displacement

»

U

{d.a) {d}

In STERA_3D, the predictor stiffness is created from the initial stiffness or tangent stiffness if available.

Substituting the above equations into the equation of motion,
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[M{a.,}+[Clvi}+{/ (di)} ={Pi} (5-8-24)

[M]( | {Ad,.ﬂ}}[c][zﬂzm){Adm}+{v,}+§{a,.}<m>j

K (d) [{ad b+ {f(dn)} = 1P}

Solving for{Ad . },

K |{ad,,}={p} (5-8-25)
where

[R)=[K (@) 551 ] (5826

(=Ll v+ o (40 |- (@ )} + ) 1)

The procedure for solving the equation of motion is as follows:

Step 1. Calculate the predictor displacement Vector{dm} by Equation (5-8-15).

Step 2. Obtain the restoring force { f (c? " )} in reference to the constitutive model.

Step 3. Substitute { f (d,- » )} to Equation (5-8-27) and solve the displacement increment {

from Equation (5-8-25) and obtain the corrector displacement {d il } from Equation (5-8-18).

Under seismic excitation and gravity load, the equation of motion will be,

Xo,m
[M (@} +[Clva b +{f ()} ==[M][V]} T (5-8-28)
ZO,i+l -8

The initial displacement as {d } = {do} , where {do} is the solution of

[K]{d,} =-[M][U]50 (5-8-29)
g
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5.9 Energy
a) Equation of energy

As it was mentioned in Equation (5-5-2), the equation of motion is obtained as:
X,

(v R+ [Claa + [ ey = (M JUK 74 = {P) (5-9-1)
Z,

For example, in case of a structure with a rigid floor in Figure 5-9-1, the displacement vector, {u}, consists

of 15 components (see RED numbers in Figure 5-9-1.)

U,
{u}= uf (5-9-2)
Uys
1 4
6 Ih \7,1&) [az %5
110 ) ! 7T 8 w0
13
5 ] \9,.\ 18 ¥ 11
I 9 - LB D
1 2
77 s 7777 77777
3 7 4 7
/8 e /e Y/

Node number Freedom number

Figure 5-9-1 Example of the freedom vector of a structure with a rigid floor

The equation of energy is derived by multiplying the velocity vector, {u }T, and integrating by the time

range [0-t]:
t

[ [orYiahdo + [ a7 [CYabee + ) [ Yookt = - [ (P (5:93)

0
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L PR L Y 59
W, +W,+W, =W, (5-9-5)
where,

W, = M - Kinematic energy

W, = J‘ {u }T [C ]{u }dt : Damping energy
0

W, = M - Potential energy
2
t
W, = —I {u }T {P}dz : Input energy
0

If the system is nonlinear, the equation of motion can be expressed as:
X,

[ Jii+ [C o+ Qi) =M JUF ¥, = {P} (5-9-6)
Z,

where, Q(u, u) is the nonlinear restoring force vector. Then, the equation of energy can be derived as;

W, +W,+W, =W, (5-9-7)
where,

y il Il

2

: Kinematic energy

Oy~ O ——

w, {u }T [C ]{u }dt : Damping energy

(5-9-8)
{L’t }T Q(u, u )dt : Potential energy
W, = _j {u }T { P}dt : Input energy

0
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b) Decomposition of potential energy
We can decompose the restoring force vector into the restoring force of each member as,
Ou,it) = q,(u, 1)+ q, i)+ -+ q,(u,i); n:number of members (5-9-9)

Therefore, the potential energy can be decomposed as,

v, =l Qb= [ S b =3 [ st | S, o

=

t
G = J.{u }T q; (u, Ift)dl‘ ;  potential energy of i-th member (5-9-11)
0
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6. Nonlinear Static Push-Over Analysis

6. 1 Lateral distribution of earthquake force

The static lateral load representing the earthquake force is applied at the center of gravity in each floor.
There are several formulas to define the load distribution along the height of the building. In “STERA 3D”
program, the following distributions are prepared:

1.A1 2. Triangular 3. Uniform 4.UBC 5.ASCE 6. Mode

(1) Ai distribution
In the “Building Standard Law” in Japan, the design shear force of i-th story, Qi, is defined as,
0. :Clzn:wj, C, =ZR,A,C, (6-1-1)
J=i
where,
Ci: design shear coefficient of i-th story,
Wit weight of i-th story,
Z seismic zone factor,
R: vibration characteristic factor taking into consideration of soil condition,
Ai: lateral distribution of shear force coefficient,
Co: design base shear coefficient (Cy=0.2 for serviceability limit, Cp=1.0 for safety limit)

If we set, Z=1.0 (Tokyo), R=1.0 (stiff soil, a short story building), C¢=1.0 (safety design), the design shear

force distribution is simplified as,

0, = AiZn:Wj (6-1-2)
=i

“A;” distribution is defined as,

4, =1+ L—05 2T

Ja, U)1+3T

(6-1-3)

where,

n n
o, = Z w; /W, W = Z w; : the ratio of weight upper than i-th story,
j=i

J=1

T: the first natural period of a building (=0.024, A the building height)

As shown in Figure 6-1-1, the static lateral load is obtained as,

Fn:Qn’ E:Qi_Qi+1 (izla"'an_l) (6-1-4)
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Fo=Qs /> e
@ | = Cows
Fs=Qs5— Qs I:> W5

:> w Qs=Cs (w5 + We)

=
=)

Qi = Cizwj
C. =ZRtAl.CO

1

Figure 6-1-1 Ai distribution

(2) Triangular distribution

Triangular distribution is defined as:

F, =Q3(hi Zn:h]j

where,
QB : base shear force

h;: the height of the i-th story from the ground

!

l

0.

o 0

ho
In

5

. w3
. W2 .
Fi=Qi-Q L
Q1=Cq(w1t+twz+ ==+ ws)

he

Figure 6-1-2 Triangular distribution
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(3) Uniform distribution

Uniform distribution is defined as:

F,=0,(/n)

l

|

Fi

l

A

l

!

Figure 6-1-3 Uniform distribution

(4) UBC distribution

(6-1-6)

The UBC (Uniform Building Code, 1997) gives the following formula for the calculation of lateral force

distribution:

B 0 ,if T <0.7sec
*10.07TQ, ,if T >0.7sec

Fﬁ ne

o Tm h

Figure 6-1-4 UBC distribution
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(5) ASCE distribution
The IBC (International Building Code) in the U.S. refers to the ASCE 7 “Seismic Design Requirements for

Building Structures” which gives the following formula for the calculation of lateral force distribution:

F, =Wl-h,-k/zwjhf (6-1-9)
J=1

where kis an exponent related to the structural period as follows:

1 , if T <0.5sec
k=(T-0.5)/2 , if 0.5sec<T <2.5sec (6-1-10)
2 , if T>2.5sec
k=2 k=1

v
’
4
’

m

-

he

-
-
-

ho
In

Figure 6-1-5 ASCE distribution
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(6) Mode distribution
Mode distribution is defined as:

F, = QB{Wi¢l,i/in¢l,j]

where,

¢1,i :

component of the first mode distribution in the i-th story

Fi

Figure 6-1-6 Mode distribution
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6. 2 Capacity Curve

The Capacity Spectrum Method was proposed by Freeman [1978] as an approximate way to estimate the
maximum response of a structure under an earthquake ground motion. The concept was modified by
Kuramoto et.al [2000] to adopt the distribution of nonlinear story displacement as the first mode shape in

each calculation step. The method was adopted as one of the evaluation procedures in the Building

Standard Law, Japan.

The key concept of the Capacity Spectrum Method is to find out the intersection between the Demand
Spectra (= relationship between Sd (displacement spectra) and Sa (acceleration spectra)) and the Capacity

Curve (= nonlinear push-over curve of an equivalent single-degree-of-freedom system).

1400
1200 | Demand Spectra
SA-SD(h=0.05)
1000
N Demand Spectra
8 800 SA-SD(h=0.14)
5 500 X\;Capacity Curve
© /| Py
0 -
’ .7
400 / e -
/ PR Performance Point
’ -
200 /0 .-
R -
. e
0
0 10 20

Sd (cm)

Figure 6-2-1 Schematic example of the concept of Capacity Spectrum Method

As discussed in 5.3 Modal analysis, if we consider the first-order mode to be dominant in a
multi-story building, the displacement and acceleration of the equivalent one mass model are

expressed as,

n n
2 2
z :miui z ,mi¢1,i
i-1 _

n
2
th”t
_ i=1
~ ’ SA - 2
n
m.u.
Z i (Z'Mﬁuj
=l -1

QB N
5

Oy (6-2-1)

D

Representing the displacement by the inelastic rather than the elastic first-mode shape is
consistent with characterizing the structure by its secant stiffness to maximum response.
Therefore, “STERA 3D” provides the menu in the static analysis to show the Capacity Curve based on the

following formula (Kuramoto et.al [2000]):
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n n

2
E m,A; E m[Af
i=1 _ i=1

Sp== » SyE= 50 (6-2-2)
m.A.
i m. A
where,
m;: lumped mass in the i-th story
A component of the distribution of nonlinear story displacement in the i-th story

!

ﬂ

m

t‘~_
@
¥

1
\ ’ 1
‘\ : /I A i 'I
\ ! 1 1
= S ,,
\\ : " ~ ,'
\ | ' ~ ] =
= o @ M Sa
1 1
1 II 1/ —_
?2 t,' ) M : Equivalent SDOF mass
\\: // II
AUl 1 1
A| /
Nonlinear static push-over analysis Capacity Curve of SDOF system

Figure 6-2-2 Capacity Curve of the equivalent SDOF system

As schematically shown in Figure 6-2-2, the step-by-step results of nonlinear push-over analysis is used to

obtain the Capacity Curve of the equivalent SDOF system using Equation (6-2-2).
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7. Lumped Mass Model

7.1 Decomposition of shear and flexural deformation

a-1) Equivalent plane for each floor from displacement

The equivalent plane (z = ax + by + ¢ ) is obtained from the vertical displacement distribution by the least

square method:

y
Figure 7-1-1 Equivalent plane

Minimize L= Z(Zi —(ax, +by, +¢)) (7-1-1)

where, i:node number in the floor

a, b, ¢ : parameters of equivalent plane

oL oL oL
Thus, —=0, —=0, —=0 (7-1-2)

oa ob oc

Parameters, a, b, ¢ are obtained by solving the following linear equation:

2z | | Xx Xxy X [a
22y |= DRI K (7-1-3)
Zzi sym. n |c

where,

7 : the number of nodes in a floor
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a-2) Equivalent plane for each floor from potential energy

The equivalent plane (z = ax + by + ¢ )is obtained from the vertical potential energy distribution by the

least square method:

y
Figure 7-1-2 Equivalent plane
2
Minimize L=Y(Nz—N,(ax, +by,+c)) (7-1-4)
where, i:node number in the floor
N, : axial load at node i
a, b, ¢ : parameters of equivalent plane
oL oL oL
Thus, —=0, —=0, —=0 (7-1-5)
oa ob oc
Parameters, a, b, ¢ are obtained by solving the following linear equation:
ZNizl.xi Z:Nixi2 ZNixl.yl. ZNixl. a
Y Nzy, |= SNy DNy ||b (7-1-6)
Z N,z sym. z N, || c
where,

7 : the number of nodes in a floor

At this moment, STERA 3D adopts the formulation a-1), since it is easier to implement.
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b) Decomposition of shear and flexural deformation

A story drift, D, can be divided into shear and flexural components as,
D = Dy (shear)+ D,.( flexure) (7-1-7)
Assuming the distribution of floor deformation is expressed by an equivalent plane (z = ax + by + ¢ ), the

flexural deformation, D, , can be expressed as,

D, =—aH : x-direction (7-1-8)
D, =bH : y-direction (7-1-9)

Note that the coefficient ‘a’ is the negative angle in x-direction.

Then, the shear deformation can be obtained as,

D,=D-D, (7-1-10)

in x-direction

in y-direction

Z

Figure 7-1-3 Decomposition of shear and flexural deformation
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7.2 Lumped mass model with shear and flexural stiffness

a) Linear flexural model
The frame model can be idealized as a lumped mass model with a concentrated mass at each floor and

shear and flexural springs in each story.

Figure 7-1-4 Idealization to lumped mass model

Under the external lateral forces, F, (i =1,2,3), the shear force and moment of each story are expressed

as below.

Q3:F3

- By —» M, = Fhy=0Qsh;, 0,
h, O, =F+F
— E e Mz:thz"'F3(h2+h3):Q2hz+Q3h3’ 91
M 4 /,L\ O =F+F+F
. f v
M, :F{hl +F2(h| +h2)+F;(h1 +h2 +h3)=Q1h| +thz +Qshs
Figure 7-1-5 Moment and shear force of lumped mass model
In general
N
M, =Y 0h, (7-1-11)
Jj=i

Note that if we consider the sign of coordinate

N N
M, = _Z Oyl M, = Znyhj (7-1-12)
j=i j=i
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From the beam theory

:&\i\ﬁi\%
D:%
Il
o
+
=

LW
=]

o

D
Il
::]
_I_
=
SN
5

M, 2E1[2 V|fr,| 2E[2 1][6,-R
, My h |1 2|lz,] k|1 2]]6,-R

/\U (7-1-13)

i+l Mi+l
i

[N
h EI h El /
M. U -M

Figure 7-1-6 Moment and rotational deformation

Substituting

M,=-M,, M,=M,,, 7,=0., t,=60_+A0, EI=El, h=h

i+1° i i

-M;| 2EI|2 1 0, _ 2EI 36, +A6 1)
Mi+l - h,' 1 2 Hi_|+A9i - h[ 3(9i—1+2A9i

Therefore, the equivalent flexural stiffness can be obtained as

ElizL(MHﬁMi), i=1-n
2A6,
. (7-1-15)
El, =—21 (M
n+l ZA enH ( n+l )
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The increment of rotational deformation A, is the difference of floor angle. Therefore,

AB, =6,
. (7-1-16)
A =0-0_,, i=2,---,n+1
From the beam theory, the flexural deformation is
n h
0= +—(6,+06 7-1-17
TR (0:+65) 74D
M, +M 6EI o
) Q=-——AE —{(0,+6,)-2R}, R=—
h h
Therefore, the flexural deformation of i-th story is obtained as
D
F1 = 12E] —0+
(7-1-18)
D, = 0.,+6 i=2,--,n+1
" 12EI ( )

The shear deformation is then calculated substituting the flexural deformation from the story drift as

Dy =D, =Dy, (7-1-19)

Under the nonlinear push over analysis, it is generally assumed that the flexural component is elastic and

only the shear component is considered as nonlinear.

25F

24F Zf u
22F Shear deformation _
{nonlinear) Hysteresis

Flexural deformation
(linear)

Figure 7-1-7 Decomposition of shear and flexural deformation
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Therefore, the lumped mass model is obtained from the following procedure:

In the first step of push-over analysis (in elastic stage)
1) Calculate equivalent plane (z = ax + by + ¢ ) of each floor to obtain the flexural angles a, or b,
2) Calculate increment of angle A6, =a;,—a, , or AG,=b,—b,

3) Calculate the flexural stiffness

El = M. +M. 7-1-20
i 2 9 ( i+1 ) ( )
4) Calculate the flexural deformation
h’ h,
D, = 12El (a +a;) or D O +—L(b_ +b,) (7-1-22)

Y IZEI 2
5) Calculate the shear deformation
Dy =D, -Dy (7-1-23)

From the next step, we use the same flexural stiffness obtained previously.

6) Calculate increment of angle

hi
A6, = (M., +M,) (7-1-24)

i

7) Calculate flexural angle of each floor

a, :kZMk or b, :kZMk (7-1-25)
=1 =1

8) Calculate the flexural deformation

3
(a +a,) or D = 12hE1 0, +%(b,._l+bi) (7-1-26)

Duri = 12El
9) Calculate the shear deformation

Dy =D, -Dy (7-1-27)
10) The relationship between the shear deformation and the shear force is idealized as a nonlinear

hysteresis model of the shear spring of each story.
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b) Nonlinear flexural model
To consider nonlinear flexural component, the model to separate shear deformation and bending eformation

is used.

Reference) Akira Wada, et. Al. “Response Control Design of Buildings”, Maruzen (in Japanese), 1998

>
~
~

<
-
—_

A
o
,=0,+6, =— (7-1-28)
M M
0)’m: y’éxv:Qx’ Qx: -
k, ‘ k, h
M S |
5. =0,h+6 h= S O O/ SN © A U 0. (7-1-29)
’ k, k, k, k, k, k,
Therefore, the relationship between the displacement and the force is expressed as follows:
1
0 =kb, k=77 (7-1-30)

TR 1
- + -
kb kv
From nodal displacement,

u

u

"A} (7-1-31)

xB

S.=uy—u, =[-1 1]{
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- By —» My =Fh =0Qsh;, 0,
N, =W, +W,
h, O, =F+F,
-1 H — Mz:F;h2+ﬂ(hz+h3):thz+Q3h3’ 0
N =W, +W,+W,
h T e— 0 =F+F+F

4N

M, :F{hl'*'Fz(hl+h2)+F;(hl+h2+h3):Q1h|+Q2h2+Q3}%

Figure 7-1-5 Moment and shear force of lumped mass model

By substituting

MA:_MH MB:MHI’ QA:QN QB:QHI’ NA:Ni’ NB:]\][H’

0,

=0, 0,=0, u,=u_, uy=u, 6,=6, 6;=9, h=h

i+1° i

the lumped mass model is obtained from the following procedure from the push-over analysis.

1)

2)

3)

4)

5)

Calculate equivalent plane (z = ax + by + ¢ ) of each floor to obtain the flexural angles a, or b,

and the vertical location at the center of gravity (xci , yci) as z,=ax,+by +c.

Calculate shear deformation

Oy =u, —11h6, (7-1-32)
o,=u,—u, , —nh@, i=2,---,n+1 (7-1-33)
Note that 77 =—1 for 6, = a, (x-direction)and 77 =1 for 6, = b, (y-direction)
Calculate the shear stiffness

ky=0,/0, (7-1-34)
Calculate axial deformation

g, =90 (7-1-35)
g,=0,—0,,, i=2,---,n+1 (7-1-36)

Note that o, =z, — Zhi
k=1

Calculate the axial stiffness
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kni = Ni /8ni

6) Calculate moment at each floor

N
M,=n) 0h, (7-1-38)
j=i

Note that 77 = —1 for (x-direction) and 77 =1 for (y-direction)

(7-1-37)

7) Moment of the bending spring is
M, =M, i=1,-,n (7-1-39)
The rotational deformation of the bending spring is

4, =6,-06., (7-1-40)

The bending moment and the angle are transformed to the equivalent shear force and the equivalent story
drift as follows:

M k
Equivalent shear force O, = hb > 0= h—l;5b =k, O,

Equivalent story drift S, = h¢

k
Equivalent stiffness O, =k,.0,, k,, = h—g
After finding the tri-linear model for O, — &, relationship, it is returned to M, — ¢ relationship as,
S 2
M,=0h, ¢ =7, ky =k h

In dynamic analysis, the rotational inertia at each floor is neglected.
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¢) Trilinear modeling of push-over curve
From the push over results up to the ultimate deformation (for example, up to 1/50 drift ratio), the

relationship between the story drift (shear O, bending O,) and the shear force (shear (., bending
QO,) of each story is transformed into a tri-linear skeleton.

P3(D3,Q3) _.

PI (D1, Q1) @-/-

<Casel>
When the drift ratio (drift divided by the story height) of the last point is less than the minimum value (for

example, 1/1000)
® P3 (D3, Q3)

The skeleton is assumed to be linear.
1
1

P1 (D1, Q1)
The last point is P1

K1=QI1/Dl /
P2(D2, Q2) ® P2 (D2, Q2)
D2 =2xDI i

K2 =KI K2
P3(D3, Q3) ,¢ PL(DL QD)

D3 = 4xDl ]

K3 =Kl
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< Case 2>
When the last stiffness is large (for example, tangent stiffness > 0.1 K1 (initial stiffness))

P1(DI1, Q1)
Find initial stifthess K1
Find Q1 that is the force when the tangent stiffness becomes 0.8K 1 and determine D1 = Q1/K1

P2(D2, Q2)

The last point is P2.
K2 is the stiffness between P1 and P2

P3(D3, Q3)
D3 = 2xD2
K3 =K2

2 p3(D3, Q3)
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<Case 3>

When the last stiffness is small (for example, tangent stiffness < 0.1 K1 (initial stiffness))

P1(D1, Q1)

Find initial stiffness K1

Find Q1 that is the force when the tangent stiffness becomes 0.8K1 and determine D1 = Q1/K1
P2(D2, Q2)

P2 is decided to be the same energy between push-over analysis and the model up to P3.
P3(D3, Q3)

P3 is the last point of push-over analysis

K3 is the tangent stiffness at P3

P3(Q3,D3)

K3 = tangent K
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8. P-D effect

The formulation in this chapter is based on the following book:

James F. Doyle, “Static and Dynamic Analysis of Structures”, Kluwer Academic Publishers, 1991
a) Equilibrium of the beam with an axial load

We consider equilibrium of the beam with a slight displacement with an axial load.

Figure 7-2-1 Equilibrium of small beam segment slightly deformed

Assuming small deflection, the balance of moment on the small segment “Ax” gives

AM +V (Ax)-F,(Av)=0 (8-1-1)
Therefore

My g (8-1-2)
dx dx

2
v
From the relationship, M = EI F’ the governing differential equation for the deflection shape is
x

d*v dzv_

The general solutions are,

for compression loading (£, < 0):
v(x) = ¢, coskx+c,sinkx+c,x+c,, k*=-F,/EI, (8-1-4)
for tensile loading (F;, > 0):

v(x) = ¢, coshkx +c, sinhkx +c;x+¢,, k*=F,/EIl (8-1-5)
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b) Geometric stiffness matrix of the beam with an axial load

We assume that the axial force is constant and compressive. From the general solution, Eq. (8-1-4),

at x=0

dv(0) _
dx

v(0)=v, =¢, +c,, ¢, = ke, +c, (8-1-6)

Consequently, the deflected shape is
v(x)=c, (coskx—1)+ c, (sinkx—kx)+ v, +@x (8-1-7)

Similarly at the end of other node,

V(L) =v, =¢,(coskL —1)+ ¢, (sin kL — kL) + v, + ¢,L (8-1-8)
% =@, = —kc, sinkL + kc, cos kL + ¢, (8-1-9)
X

Then, the coefficients, c¢,, ¢,, can be arranged as,

{(1_6') (&-9) }{01}:{"1 +¢1L_V2} (8-1-10)
&S S(1-C) | c, $L—p,L

where,

C=coskL, S=sinklL, &=kL (8-1-11)

Solving this equation by Cramer’s rule gives

G = [V1§(1 - C)+¢1L(S _§C) _Vzég(l_ C)+¢2L(§ _S)]/A (8-1-12)
¢, =[-v,E + ¢ L - C—ES)+v,ES + ¢, L(C - )]/ A (8-1-13)
where

A=E(2-2C-&5) (8-1-14)

Now we can rewrite the deflection function in terms of the nodal degrees of freedom. The moment and

shear force distributions can be obtained as
2

M(X)ZEIZ :=EI[—kzc] coskx —k’c, sinkx] (8-1-15)
X

3
V(x)=-El %WO%LEWM ~ ke, ] (8-1-16)
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Calculating nodal loads, V'(0)=—-V,, M(0)=-M,,V(L)=V,, M(L) = M, the stiffness matrix is

4 &S ELi-0) -&’s L1-C) |
Mi|_ELE|  -DEC-S) -&1-0) LE-S) |4 1)
v, | L' A ) —EL(1-C) | v,
M, sym. —L’(&C-9) | ¢4,

¢) Approximation of geometric stiffness matrix

We simplify the geometric stiffness matrix to be linear in the loading F).

Using the series expansion for the sine and cosine terms, the determinant is,
A=¢&(2-20-£5)

c 2= 24 E 24— 11204 - E(E- £ 16+ £71120-)]  (8-1-18)
~ =g 15+ ]2

also

1 12

— =+ &5+ 8-1-19
A 55[ g ] ( )

We now do the expansion on the stiffness terms. For example,

EI &% ¢, Ely,_, 3 12 ) EI )
’ :?X(§ S):F[g (e-¢ /6+---)]?[1+§ /154 :712[1—5 /10+--]
(8-1-20)
Substituting &> = k*L* =~F,L/ EI
EI F,|12
k,, =—[12]+—2|—= 8-1-21
w="5112] LLO} (8-1-21)
In the same manner, we can expand for all the stiffness terms to get the stiffness matrix as
12 6L —-12 6L 36 3L -36 3L
El 41 -6L 2L’ | F, 41> -3L -I?
[k]== + (8-1-22)
L 12 -6L| 30L 36 -—-3L
sym. 41’ sym. 41’
We can write as
[k]=[k; ]+ [k ] (8-1-23)

where, [k £ ]: the element elastic stiffness, [kG ]: the element geometric stiffness
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d) Implementation for beam element

Figure 7-2-2 Including node movement

For beam element,

M,| 2Er\2 1\z,| EIl4L> 2L |7,
_ L = (8-1-24)
M, L |1 2|7, L 217 AL |74

Including node movement,

Tu,
L }z 0 ] ) (8-1-25)
B — 0 == 1148

L L ‘_6’3
QA_ % % ) T1 1 Uy
M, | |7 ¢ [sr 227 P o7 9,
o, | | L _Lior a1 o 1 lu,
My o 1 - LoAe,

6L 6L |y R 12 6L -12 6L |u,
cEr|ar 2|7 Y 7 Oe | m ar* —6L 2I* |6,
r\-eL —eL|1 4 1 fu,| I 12 —6L|u,

20 417 |LL L g, sym. 4’ || 0,

From (8-1-22), the geometric stiffness matrix will be

36 3L -36 3L

k] F, 41> -3L -L° S 126
91 30L 36 -3L (5-1-26)
sym. 41’
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Therefore, the stiffness equation will be

9,
MA

O
M,

EI
L

12

sym.

6L
41°

-12 6L
—6L 2L’
12 -6L

41"

36
FO

+
30L

sym.
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—-36
-3L
36

3L |\ u,
-’ |0,
—3L || uy
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e) Implementation for column element

Al
l!
Z
ALl X
‘M, 2E1T2 177, EIf4arr 20277,
L il == ) T | inX-Z plane (8-1-27)
_MyB_ L |1 2)7,| L'|2L° 4L |7,
M. 2E[2 1z, | EIl4r? 2020z, ] .
=— =— s s in Y-Z plane (8-1-28)
| M ;| L |1 2|7r,] L 207 4AL° |74
Including node movement,
1 1 uxA
TyA B Z ! z 0 gyA
= I I in X-Z plane (8-1-29)
TyB - 0 — 1 U.p
L L _'9y3 J
1 1 Uya
T — L —-— 01y
{ w } - % % “ | inY-Z plane (8-1-30)
T8 — 0 -= 1 uyB
L L 0. ]

Note that the matrix for node movement in X-Z plane is different from that of beam element. The

force-deformation relationship in X-Z plane is then,
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.
o -— -= 1
L —— 1
M, | EI| 1" o |4 20|
O, | | L 1jorr a2 1
L L

M s 01| L

—6L —-6L u,,

2 2 ! 1 ! 0

_EI[AL 20|\ T 7 0., |_EI
rler 6L | 1 o 1 u,l I

21 417 L L L 0

~| ==

12 [-6L| -12 [-6L] u,

417 2L |6,

12 | 6L |u,

sym. 41 | 0,
(8-1-31)

Considering the difference of sign of stiffness matrix in X-Z plane, the geometric stiffness matrix will be

[ 36 36
. ]=fo 417 -1
0 30L 36
| sym. 4L2_
36 3L -36 3L
[k ]:i 41> -3L -I°
Y1 30L 36 —
| sym. 41’

in X-Z plane

in Y-Z plane

(8-1-32)

(8-1-33)

Therefore, changing the order of vector component, the force-deformation relationship of column will be

Q. Uy 36 -36
QxB uxB - 36 36
M, 0, ~3L 3L
M, 0., ~3L 3L
0.4 U, 0 0
ng _ [K]< U N F, 0 0
M, 6,1 30L| O 0
M 0, 0 0
N_, o, 0 0
N, 0 0 0
M _, 0., 0 0
M , 0, | 0 0

-3L
3L
AL*
_J?
0

S O O O O O O

-3L 0 0 0
3L 0 0 0
-L* 0 0 0
4> 0 0 0
0 36 -36 3L
0 -36 36 -3L
0 3L -3L 4
0 3L -3L -I’
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
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3L
—-3L
_J?
417
0
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0
0
0

S O O O O O O o o o o <o




uxA
uxB
l9yA
HyB
U,
uvB
=[&]+[&. ]} (8-1-34)
HxA
HxB
é‘zA
523
ezA
GZB
where,
36 -36 -3L -3L 0 0 0 0 00 0 O]
-36 36 3L 3L 0 0 0 0 0 0 0O
—-3L 3L 41* -’ 0 0 0 0 0 0 0O
-3L 3L -L* 4I° 0 0 0 0 0 0 0O
0 0 0 0 36 -36 3L 3L 0 0 0 O
F, 0 0 0 0 -36 36 -3L -3L 0 0 0 O
[K.]= , , (8-1-35)
30L| O 0 0 0 3L -—-3L 4L -L~ 0 0 0 O
0 0 0 0 3L -3L —-L* 4L 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 O
0 0 0 0 0 0 0 0 0 0 0O
0 0 0 0 0 0 0 0 0 0 0O
i 0 0 0 0 0 0 0 0 0 0 O 0_
Then, applying translation of Equation (2-2-17), the constitutive equation of the column is;
P, U
P, u
D=kl (8-1-36)
F, u,
where,
(&)= ) [k T+ [T T 1K G T ] (8-1-37)
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9. Unbalance force correction

a) Procedure to correct unbalance force
In nonlinear analysis, sudden change of spring stiffness sometimes causes severe error for estimating

element force. For example, estimation of spring force f,,, is overestimated in Figure 9-1-1 and

“unbalance force” is defined as,

A = fi = [l (9-1-1)

where, flirl is the force on the nonlinear skeleton curve

The most preferable way to minimize the error is to adopt iterative calculations such as
Newton-Raphson method. However, this iteration may consume calculation time significantly.

Therefore, the following simple way is adopted to correct unbalance force:

1) Calculate unbalance displacement Ad from the unbalance force Af

Ad =Af 1k (9-1-2)

where, k is the spring stiffness

2) Subtract unbalance displacement Ad from the increment displacement in the next step

calculation

ﬁ+l """"""" A

- Af

A —

N/ — Ad

U TS

Figure 9-1-1 Unbalance force
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b) Unbalance force correction of MS model

For the Multi-spring model (MS model) of Column element, the sum of the unbalance forces of

nonlinear vertical springs in the member section is calculated as:

AN=iAfi =i(Afw +Af,) (9-1-3)
i=1 i=1

where Af,, :unbalance force of concrete spring,

Af,, *unbalance force of steel spring

The unbalance displacement is then calculated as:

AD = AN/ i k. =AN i (k. +k.,) (9-1-4)
i=1 i=1

where k_; :stiffness of concrete spring,

k, ;" stiffness of steel spring

In the next step calculation, the increment displscement of each spring is ajusted as follows:

Ad]=Ad, — AD (9-1-5)
where Ad,:increment displacement of i-th spring

Ad] : adjusted increment displacement of i-th spring

v
i

Figure 9-1-2 Unbalance force in MS-model

The same procedure is adopted for the MS model of Wall element.
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10. Calculation of ground displacement

In STERA 3D, the ground displacement is calculated from the ground acceleration data using FFT method

and filtering techniques based on the description in the following reference:

Reference: Yorihiko Osaki, “Introduction of Spectral Analysis of Earthquake Ground Motion”, Kajima
publishing corporation, 1981 (in Japanese)

a) Discrete Fourier Transform

Assume that the acceleration data is collected at an interval, At=T7T/N and consists of the
N measurement data x, (m=0,1,2,---, N—-1), where T is the period of the data that

corresponds to the duration time of data. The coefficient of a Fourier series is obtained as:

N-
=%Z e ORI 20,12, N—1 (10-11)

The inverse discrete Fourier transform is

N-1
= Ce ™™ m=0,1,2,---,N-1 (10-1-2)

k=0

b) Integration of the data in time domain

Assume y, (m=0,1,2,---, N —1)is the integration of the discrete data x, in time domain.

The data y,, is obtained by the following inverse discrete Fourier transform:

(e NAt iQ2dkm/ N) -1-
v, _Uo xmdtj ZS m=0,1,2,--,N -1 (10-1-3)

T k=0

where, the coefficients S, are obtained from the coefficients C, as,

2wy NS Hm(C (N—I)CO
TN T & N
ﬂC .C *
S, = N" [—1+icos(7zk/N)]—lTk, Sy, =8y, k=12, N/2-1 (10-1-4)
aC
Syin=- NO
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The following band pass filter (Butterworth filter) in frequency domain is applied to the

coefficient §, .

G,(/)=G, ()G, () (10-1-5)
G, (f)= (10-1-6)
1
G,(N=|— (10-1-7)
1+(f/ 1)
1.2 1.2
) ) —N-=3
4; —N=5
o o \ N =10
0.6 —_—N=3 0.6
0.4 —N=5 0.4
0.2 N=10 0.2
0 0
0 0.5 1 1.5 2 0 0.5 1 1.5 2
G,(f) G, (f)

Figure 10-1-1 Butterworth filter

STERA_3D adopts the following frequency parameters:
f, =01 (Hz)

f; =20 (Hz)

353



¢) Calculation flow
The ground acceleration data is integrated twice to obtain displacement data. Band pass filter is applied

each time of the integration. The flow of calculation is summarized below:

[1] From acceleration data to velocity data
x, (m=0,1,2,---,N-1)
l FFT Calculate Fourier coefficients of the data
C, k=0,1,2,---,N-1
l Eq. (10-1-4) Calculate Fourier coefficients of the data of the integration
S, k=0,1,2,---,N -1
l Eq. (10-1-5) Apply band pass filter

hS, k=012 N-1

IFFT Calculate the data of integration by Inverse Fourier transform
vy, m=0,1,2,---, N =1)

[2] From velocity data to displacement data

Repeat the above process again
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11. Damage Index

11.1 Damage Index of RC Members

Reference:
- Young-Ji Park, A. H. Ang (1985) “Mechanistic Seismic Damage Model for Reinforced Concrete”,

Journal of Structural Engineering, ASCE

1) Park and Ang Damage Index

STERA 3D adopts the following damage index, so called Park and Ang damage index, to evaluate the

structural damage under earthquake.

0, E E
D=Cnyp i _Hu,p S (11-1-1)

§u Qyé‘u Itlu Qy§u

where
0, = 1,0, :  maximum deformation under an earthquake,
o, =H0, . ultimate deformation under a monotonic loading,
M, :  maximum ductility factor under an earthquake,
M, : ultimate ductility factor under a monotonic loading,
o, . yield deformation,
0, . yield strength,
p :  parameter related to the cumulative loading effect,
E, = IdE . dissipated hysteretic energy.
T
0, =10,

Figure 11-1-1 Force-deformation relationship of the member
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The cumulative ductility factor is the ratio of the cumulative dissipated energy defined as

E
n=—2" (11-1-2)
Qyé‘y
The damage index can be rewritten as
p=tn g’ (11-1-3)
H, H,
2) RC Beam and Column

Ultimate ductility factor
According to Park and Ang (1985), the ultimate ductility factor, ¢, , for reinforced concrete beams and

columns is highly variable and depends on the failure mode of the member as shown in Figure 11-2.
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Figure 11-1-2 Ultimate ductility factor and failure mode (Park and Ang (1985))
In case of the flexural failure, the value is greater than 10. Therefore, in STERA 3D,

u, =15

is adopted for the nonlinear flexural springs at both ends of the reinforced concrete beams and columns.
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Parameter 3

The parameter § represents the effect of cyclic loading on damage. According to Park and Ang (1985), 8 is
calculated as,

p= (—0.447 + 0.0735 +0.24n,+0.314p, j x 0.7 (11-1-4)
where

l/d . shear span ratio (replaced by 1.7 if [/d <1.7),

n, : normalized axial stress (replaced by 0.2 if 7,<0.2),

D, . longitudinal steel ratio as a percentage (replaced by 0.75% if p, <0.75%),

P, : confinement ratio.

Figure 11-1-3 shows the comparison between the calculated and experimental results of . The applicable

range of the above equation is

1.0<//d<6.6
0<n,<0.52
02<p, <2.0
159 MPa< f '(concrete strength) <41.4 MPa (11-1-5)
1.5 T
N=261 ®
COV=60% ) ° o°

Experiment B

"% | 0.5 1.0
Calculated B

Figure 11-1-3 Parameter § (Park and Ang (1985))
The default values in STERA_ 3D are

H, =15
f=02
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3) RC Wall

There is not much study about the damage index of RC shear walls. Therefore, STERA 3D adopts
arbitrary values for 4, and f.

STERA 3D adopts

#, =15

p=0.05
for the nonlinear flexural springs at both ends of the reinforced concrete wall.
Also

=8

B=0.1

is adopted for the shear spring of the reinforced concrete wall.

4) Damage Index of group of members

The damage index for a part of a structure, such as individual story and for the entire structure, can be

evaluated as the weighting average of damage indices of structural elements in the part.

D,, = Z w,D, (11-1-6)
where

D o - damage index of the part of the structure

n :  number of elements in the part of the structure

w, :  weighting factor of the i-th element.

D, : damage index of the i-th element

The weighting factor w; can be based on the dissipated hysteretic energy of each element as,

W = i (11-1-7)
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11.2 Damage Index of Steel Members

Reference:

- Study on Seismic Performance for Super-High-Rise Steel Buildings against Long-Period Earthquake
Ground Motions, Building Research Institute, Building Research Data, No. 160, 2014,7 (in Japanese)

1) Steel Beam Connection
a) Damage index based on fatigue curve

The linear cumulative damage model known as the Miner rule is one of the frequently applied procedure

to estimate the cumulative damage index (CDI) of element with random cyclic loadings. It is described as,

cpr=Y 2«1 (11-2-1)
i N i
where
CDI  : cumulative damage index
n, : number of cycles accumulated at strain level Ag,
N, : number of cycles to fracture

For the low cycle fatigue with the cyclic plastic deformation, the relationship between the strain amplitude

Ag; and the number of cycles to fracture NN, is expressed by the Mason-Coffin equation as,

Ag,(%)=C-N’ (11-2-2)

or

1 1
W B
N, =(—Ag’) g (11-2-3)
C Ag,

It can be written as follows using the ductility factor g, instead of Ag,,

1

1
B £
N, = (%j = (QJ (11-2-4)
H,

According to Figure 11-2-1 in the report “Study on Seismic Performance for Super-High-Rise Steel
Buildings against Long-Period Earthquake Ground Motions” (BRI, 2014),

C=4-~10

p= 1/ 3
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Figure 11-2-1 Fatigue curve for different connection types of steel beams (BRI, 2014)

In this method, the number of cycles 7, accumulated at strain level Ag, (or ductility factor 4, ) must be

calculated using the Rain-flow method.
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Appendix) Rain-flow method

Reference:

RAINFLOW CYCLE COUNTING IN FATIGUE ANALYSIS, Tom Irvine, 2018

The Rain-flow algorithm is the method for counting fatigue cycles from a time history.

Algorithm

1. Reduce the time history to a sequence of (tensile) peaks and (compressive) troughs.

2. Imagine that the time history is a pagoda.

3. Turnthe sheet clockwise 90°, so the starting time is at the top.

4. Each tensile peak is imagined as a source of water that "drips" down the pagoda.

5. Count the number of half-cycles by looking for terminations in the flow occurring when either:

a. It reaches the end of the time history
b. It merges with a flow that started at an earlier tensile peak; or
C. It encounters a trough of greater magnitude.

Repeat step 5 for compressive troughs.

Assign a magnitude to each half-cycle equal to the stress difference between its start and
termination.

Pair up half-cycles of identical magnitude (but opposite sense) to count the number of complete
cycles. Typically, there are some residual half-cycles.

RAINFLOW PLOT

TIME
IS

STRESS
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b) Damage index based on the maximum response
Since it is an intensive work to record the time history of strain (or ductility factor) for all beams and
calculate the damage index using the rain-flow method, a practical method is proposed using the maximum

ductility factor and the cumulative ductility factor (BRI, 2014).

The cumulative ductility factor is defined as

L,

n=—-=-— (11-2-5)
Qyé‘y
(#,-1)9,
0, —_—
S, S, = 1,0,
X
S~— E,~4(u,-1)0,06,

The energy dissipation per cycle with the deformation of the maximum ductility £, is

Ey~4(u,-1)0,6, (11-2-6)
Therefore, the equivalent number of cycles is

E o
Ne = —h = 77Qy Y = 77 (11'2_7)
E, 4('um _I)Qy5y 4('um _1)
The number of cycles to fracture with the maximum ductility g, 1is
1
B
N, = [“_mJ (11-2-8)
; C
Therefore, the damage index is evaluated as
1
B
cpr =2 :L(&J (11-2-9)
N, 4(m,-DLC
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2) BRB (Buckling Restrained Brace)

Reference:
- Bucking-Restrained Braces and Applications, Edited by T. Takeuchi and A. Wada, JSSI, 2017

a) Damage index based on fatigue curve

The Miner rule is described as,

CDI:Z%Q (11-2-10)

The Mason-Coffin equation for the relationship between the strain amplitude Ag; and the number of

cycles to fracture N, is expressed as,
Ag,(%)=C-N’ (11-2-11)
For the BRB (buckling restrained brace) damper, Takeuchi et al. (2008), proposed the following formulas,
A&, (%)=0.5-N""  (Ag,(%)<0.1%)
Ag;(%)=2048-N"" (0.1% < Ag, (%) < 2.2%) (11-2-12)
Ag, (%) =54.0-N""  (22% <Az (%))
Strain Amp. A € (%)

100 E—
| A Constant Amp.ﬂ

10}

0.1 F £ ,:0-5'Nf-°'”

001 |
€ =54.0-N %"
P f

0.001 L ‘ ‘ . , .
1 10 100 1000 10* 10° 10°
Failure Cycles N, (cycles)

Figure 11-2-2 Relationship between strain and number of cycles to facture (Takeuchi et al. (1985))
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By combining with Coffin-Manson equations,

(Ae; <0.1%)  (0.1%<Ag <22%)  (22%<Ag)

n; n; n;
CDI=)| — 1 — T 1 (11-2-13)

Ag, | 014 Ag, | 0# Ag, ) o7
0.5 20.48 54.0

b) Damage index based on the maximum response

Using the same concept as in the case of steel beams, the damage index is evaluated as

1
cpr = Ne :L(”—mJﬂ (11-2-14)
N, A(u, -1\ C
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